We want to calculate the distance covered by the drag racer. Recall, the formula for calculating distance is expressed as
Distance = speed x time
From the information given,
speed = 320 m/s
time = 4.5 s
By substituting these values into the formula, we have
Distance = 320 m/s x 4.5s
s cancels out. We are left with m. Thus,
Distance = 1440m
The frictional force is given by F = μmg
<span>where μ is the coeficient of friction. </span>
<span>Work done by frictional force = Fd = μmgd </span>
<span>Kinetic energy "lost" = 1/2 mv² </span>
<span>Fd = μmgd = 1/2 mv² </span>
<span>The m's cancel μgd = v² / 2 </span>
<span>d = v² / 2μg </span>
<span>d = 8² / 2(0.41)(9.8) </span>
<span>d = 32 / (0.41)(9.8) </span>
<span>d = 7.96 </span>
<span>Player slides 8 m . </span>
<span>Note. In your other example μ = 0.46 and v = 4 m/s </span>
<span>d = v² / 2μg </span>
<span>= 4² / 2(0.46)(9.8) </span>
<span>= 8 / (0.46)(9.8) </span>
<span>= 1.77 or 1.8 m.
</span>
Hope i Helped :D
Answer:
You would need to type the numbers in the question or you could have added a picture but you didn't so there is no way to answer this question. Have a nice day!
Answer:
a. Wavelength = λ = 20 cm
b. Next distance of maximum intensity will be 40 cm
Explanation:
a. The distance between the two speakers is 20cm. SInce the intensity is maximum which refers that we have constructive interference and the phase difference must be an even multiple of π and equivalent path difference is nλ.
Now when distance increases upto 30 cm between the speakers, the sound intensity becomes zero which means that there is destructive interference and equivalent path is now increased from nλ to nλ + λ/2.
This we get the equation:
(nλ + λ/2) - nλ = 30-20
λ/2 = 10
λ = 20 cm
b. at what distance, sound intensity will be maximum again.
For next point calculation for maximum sound intensity, the path difference must be increased (n+1) λ. The distance must increase by λ/2 from the point of zero intensity.
= 30 + λ/2
= 30 + 20/2
=30+10
=40 cm
They do it by followinng the centeral nervous system