Answer:
Correct answer: Ek = 2,028.6 J
Explanation:
Ek = m v²/2 = 0.023 · 220² = 0.023 · 176,400/2 = 2,028.6 J
God is with you!!!
Answer:
Part a)
Part b)
T = 4.68 s
Explanation:
Part a)
Shell is fired at speed of 40 m/s at angle of 35 degree
so here we have
since gravity act opposite to vertical speed of the shell so at the highest point of its trajectory the vertical component of the speed will become zero
so at the highest point the speed is given
Part b)
After completing the motion we know that the displacement of the object will be zero in Y direction
so we have
Answer:
675J
Explanation:
Given parameters:
Force = 45N
Distance = 15m
Unknown:
Work done by Sheila = ?
Solution:
Work done by a body is the amount of force applied to make a body move through a distance;
Work done = Force x distance
Now;
Work done = 45 x 15 = 675J
Some guidance notes which may help.To calculate the current flow, Ohm's law can be used. This can be written as current=voltage/resistance, or I=V/R. V is 1.5V.R for the copper wire quoted would be calculated as R = resistivity x length/cross sectional area. The area would be calculated from the formula area = pi x diameter squared/4So, R=resistivity x length divided by (pi x diameter squared/4)Until is the resistivity of copper is known, that's about as far as can be gone.Any further questions, please ask.
Answer:
A-500 N
Explanation:
The computation of the tension in the chain is shown below
As we know that
F = ma
where
F denotes force
m denotes mass = 7
And, a denotes acceleration
Now for the acceleration we have to do the following calculations
The speed (v) of the hammer is
v = Angular speed × radius
where,
Angular seed = 2 × π ÷ Time Period
So, v = 2 × π × r ÷ P
v = 2 × 3.14 × 1.8 ÷ 1
= 11.304 m/s
Now
a = v^2 ÷ r
= 70.98912 m/s^2
Now the tension is
T = F = m × a
= 7 × 70.98912
= 496.92384 N
= 500 N