Can be numbered in 2 different ways, one box represents one element, and organized by atomic number
The correct answer is
<span>
force per unit charge.
In fact, the electric field strength is defined as the electric force per unit charge experienced by a positive test charge located in the electric field. In formula:
</span>

where
E is the electric field strength
F is the electric force experienced by the charge
q is the positive test charge.
Explanation:
it is given that, the linear charge density of a charge, 
Firstly, we can define the electric field for a small element and then integrate for the whole. The very small electric field is given by :
..........(1)
The linear charge density is given by :


Integrating equation (1) from x = x₀ to x = infinity



Hence, this is the required solution.
Answer:
60 cm
Explanation:
We are given;
- Focal length of a concave mirror as 30.0 cm
- Object distance is 15.0 cm
We are required to determine the radius of curvature.
We need to know that the radius of a curvature is the radius of a circle from which the curved mirror is part.
We also need to know that the radius of curvature is twice the focal length of a curved mirror.
Therefore;
Radius of curvature = 2 × Focal length
Therefore;
Radius of curvature = 2 × 30 cm
= 60 cm