Answer:
Abdominal
Sitting up, postural alignment
Biceps
Lifting, pulling
Deltoids
Overhead lifting
Erector Spinae
Postural alignment
Gastronemius & Soleus
Push off for walking, standing on tiptoes
Gluteus
Climbing stairs, walking, standing up
Hamstrings
Walking
Latissimus Dorsi & Rhomboids
Postural alignment, pulling open a door
Obliques
Rotation and side flexion of body
Pectoralis
Push up, pull up, bench press
Quadriceps
Climbing stairs, walking, standing up
Trapezius
Moves head sideways
Triceps
Pushing
God bless you. Because my soul almost left my body when i had to do this.
Answer:
35m/s[57o].
X = 35*Cos57 =
Y = 35*sin7 =Explanation:
learn man but there u go
It is trajectory acceleration. A friction track is a device to study motion in low friction environments, I believe. Does this help?
The gravitational force between the two objects A) It increases.
Explanation:
The gravitational force between two objects is given by:
(1)
where
G is the gravitational constant
are the masses of the two objects
r is the separation between the objects
In this problem, object A and object B are initially at a distance of
r = 100 m
And at that distance, the force between them is
F
Later, object A gains some mass. We notice from eq.(1) that the gravitational force is directly proportional to the mass: therefore, if the mass of either of the two objects increases, then the gravitational force between them also increases. Therefore, the new force will be larger than the original force:
F' > F
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
86.6, 45°
Explanation:
The diagram explains better.
Using vector component method:
We find the x and y components of the vectors :
For the first:
A = -50cos(0)i + 50sin(0)j
A = -50i
For the second:
B = -50cos(60)i + 50sin(60)j
B = -25i + 43.3j
The resultant vector is :
R = A + B
R = -50i - 25i + 43.3j
R = -75i + 43.3j
The magnitude is:
R = [(-75)² + (43.3)²]^½
R = 86.6m
The angle is
tanθ = (50/50) = 1
θ = 45°