Answer:
The answer is "670.176 km".
Explanation:
Volume of the occupies of one M & M= 0.5 \ cm^3\\\\
M&M 1 mole
Calculating volume of M& M mole
Calculating the cube mole

Therefore 18 tractor trailers wouldn't be sufficient.
<span>Ca^(2+). Calcium is an alkaline earth metal with an atomic number of 20. Its electronic configuration is (2, 8, 8, 2). From the electronic configuration it would be observed that calcium has two valence electrons. Calcium shares these two electrons with non metals like sulphur in an ionic bond to obtain an outer shell which is full octet. Let me use Sulphur. When calcium gives out its two valence electrons its electronic configuration becomes (2, 8, 8) thereby obtaining a stable out shell and the calcium ion becomes Ca^(2+). The sulphur also obtains a stable octet because it has 6 valence electron initially.</span>
The question is incomplete, here is the complete question:
The rate of certain reaction is given by the following rate law:
![rate=k[H_2]^2[NH_3]](https://tex.z-dn.net/?f=rate%3Dk%5BH_2%5D%5E2%5BNH_3%5D)
At a certain concentration of ![H_2 and [tex]I_2, the initial rate of reaction is 0.120 M/s. What would the initial rate of the reaction be if the concentration of [tex]H_2 were halved.Answer : The initial rate of the reaction will be, 0.03 M/sExplanation :Rate law expression for the reaction:[tex]rate=k[H_2]^2[NH_3]](https://tex.z-dn.net/?f=H_2%20and%20%5Btex%5DI_2%2C%20the%20initial%20rate%20of%20reaction%20is%200.120%20M%2Fs.%20What%20would%20the%20initial%20rate%20of%20the%20reaction%20be%20if%20the%20concentration%20of%20%5Btex%5DH_2%20were%20halved.%3C%2Fp%3E%3Cp%3E%3Cstrong%3EAnswer%20%3A%20The%20initial%20rate%20of%20the%20reaction%20will%20be%2C%200.03%20M%2Fs%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EExplanation%20%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3ERate%20law%20expression%20for%20the%20reaction%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%5Btex%5Drate%3Dk%5BH_2%5D%5E2%5BNH_3%5D)
As we are given that:
Initial rate = 0.120 M/s
Expression for rate law for first observation:
....(1)
Expression for rate law for second observation:
....(2)
Dividing 2 by 1, we get:
![\frac{R}{0.120}=\frac{k(\frac{[H_2]}{2})^2[NH_3]}{k[H_2]^2[NH_3]}](https://tex.z-dn.net/?f=%5Cfrac%7BR%7D%7B0.120%7D%3D%5Cfrac%7Bk%28%5Cfrac%7B%5BH_2%5D%7D%7B2%7D%29%5E2%5BNH_3%5D%7D%7Bk%5BH_2%5D%5E2%5BNH_3%5D%7D)


Therefore, the initial rate of the reaction will be, 0.03 M/s
Answer:
In atomic physics, the Bohr model or Rutherford–Bohr model, presented by Niels Bohr and Ernest Rutherford in 1913, is a system consisting of a small, dense nucleus surrounded by orbiting electrons—similar to the structure of the Solar System, but with attraction provided by electrostatic forces in place of gravity.