<u>Answer:</u> Aluminium is getting oxidized in the given chemical reaction.
<u>Explanation:</u>
Oxidation reaction is defined as the chemical reaction in which an atom looses its electrons. The oxidation number of the atom gets increased during this reaction.
Reduction reaction is defined as the chemical reaction in which an atom gains electrons. The oxidation number of the atom gets reduced during this reaction.
For the given chemical reaction:
The half cell reactions for the above reaction follows:
<u>Oxidation half reaction:</u>
<u>Reduction half reaction:</u>
As, aluminium is loosing 3 electrons to form aluminium cation. Thus, it is getting oxidized. Iron is gaining 2 electrons to form iron anion. Thus, it is getting reduced.
Hence, the oxidized species of the given reaction is aluminium.
Answer:
Explanation: C is the answer
The full question is shown in the image attached
Answer:
See explanation
Explanation:
In naming an alkane, the first thing we do is to obtain the parent chain by counting the number of carbon atoms in the chain.
When we obtain that, then we identify the substituents and number them in such a way that they have the lowest numbers. The compounds shown have the following names according to the order in which the structures appear in the image attached;
1. 2-methyl propane
2. 2,4-dimethyl heptane
3. 2,2,3,3-tetramethyl butane
4. 5-ethyl-2,4-dimethyl octane
Answer:
K = 2.96x10⁻¹⁰
Explanation:
Based on the initial reaction:
N2O4 ⇄ 2NO2; K = 1.5x10³
Using Hess's law, we can multiply this reaction changing K:
3 times this reaction:
3N2O4 ⇄ 6NO2; K = (1.5x10³)³ =3.375x10⁹
The inverse reaction has a K of:
6NO2 ⇄ 3N2O4 K = 1/3.375x10⁹;
<h3>K = 2.96x10⁻¹⁰</h3>
This is false. One mole of a gas occupies 22.4 L at STP, which is taken to be 0°C (273 K) and 1 atm. If atmospheric conditions depart from these values, this assumption cannot be used.