Let’s do this together!
Okay so the acceleration formula is vf-vi over time .
So the initial velocity (vi) 7m/s final velocity (vf) is 16m/s so we’re going to subtract 16-7 which is 9
M/s
So the time is 5s so 9m/s divided into 5s is 1.8m/s/2
So the answer is 1.8m\s2
Answer:
'Daniela had a 5-meter head start, and Leonard caught up to her at 25 meters.'
Explanation:
hope that helps :)
Highest frequency EM waves: cosmic rays and gama rays
Lowest frequency EM waves:
Radio and Tv waves
Answer:
The current through the inductor at the end of 2.60s is 9.7 mA.
Explanation:
Given;
emf of the inductor, V = 41.0 mV
inductance of the inductor, L = 13 H
initial current in the inductor, I₀ = 1.5 mA
change in time, Δt = 2.6 s
The emf of the inductor is given by;

Therefore, the current through the inductor at the end of 2.60 s is 9.7 mA.
Answer:

the answer is A.
Explanation:
Using the laws of newton:
∑F = ma
where ∑F is the sumatory of forces acting in the system, m the mass and a the acelertion of the system.
Then, if the block is moving with constant velocity, its aceleration is equal to 0, so:
∑F = m(0)
∑F = 0
It means that:
F -
= 0
where F is the force applied and
is the friction force. Replacing the value of F, we get:
310N -
= 0
Finally, solving for
:
