<span>When an electron moves from an excited state to the ground state, "Energy releases"
Hope this helps!</span>
Answer:
Momentum after collision will be 6000 kgm/sec
Explanation:
We have given mass of the whale = 1000
Initial velocity v = 6 m/sec
It collides with other mass of 200 kg which is at stationary
Initial momentum of the whale = 1000×6 = 6000 kgm/sec
We have to find the momentum after collision
From conservation of momentum
Initial momentum = final momentum
So final momentum = 6000 kgm/sec
Answer: The potential difference between the plates = 0.4061V
Explanation:
Given that the
Electric field strength E = 155 N/C
Distance d = 0.00262 m
From the definition of electric field strength, is the ratio of potential difference V to the distance between the plates. That is
E = V/d
Substitute E and d into the above formula
155 = V/0.00262
Cross multiply
V = 155 × 0.00262
V = 0.4061 V
The potential difference between the plates is 0.4061 V
Explanation:
If we assume negligible air resistance and heat loss, we can assume that all of the Gravitational potential energy of the ball will turn into Kinetic energy as it falls toward the ground.
Therefore our Kinetic energy = mgh = (10kg)(9.81N/kg)(100m) = 9,810J.
Answer:

Explanation:
Give that,
The potential difference of the electrons, 
We need to find the wavelength of the electrons.
Using the conservation of energy,

Put all the values,

So, the wavelength of the electrons is
.