1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
3 years ago
11

Calculate the pH for each of the following cases in the titration of 50.0 mL of 0.210 M HClO(aq) with 0.210 M KOH(aq).

Chemistry
2 answers:
Degger [83]3 years ago
8 0
a) before addition of any KOH : 

when we use the Ka equation & Ka = 4 x 10^-8 : 

Ka = [H+]^2 / [ HCIO]

by substitution:

4 x 10^-8 = [H+]^2 / 0.21

[H+]^2 = (4 x 10^-8) * 0.21

           = 8.4 x 10^-9

[H+] = √(8.4 x 10^-9)

       = 9.2 x 10^-5 M

when PH = -㏒[H+]

   PH = -㏒(9.2 x 10^-5)

        = 4  

b)After addition of 25 mL of KOH: this produces a buffer solution 

So, we will use Henderson-Hasselbalch equation to get PH:

PH = Pka +㏒[Salt]/[acid]


first, we have to get moles of HCIO= molarity * volume

                                                           =0.21M * 0.05L

                                                           = 0.0105 moles

then, moles of KOH = molarity * volume 

                                  = 0.21 * 0.025

                                  =0.00525 moles 

∴moles HCIO remaining = 0.0105 - 0.00525 = 0.00525

and when the total volume is = 0.05 L + 0.025 L =  0.075 L

So the molarity of HCIO = moles HCIO remaining / total volume

                                        = 0.00525 / 0.075

                                        =0.07 M

and molarity of KCIO = moles KCIO / total volume

                                    = 0.00525 / 0.075

                                    = 0.07 M

and when Ka = 4 x 10^-8 

∴Pka =-㏒Ka

         = -㏒(4 x 10^-8)

         = 7.4 

by substitution in H-H equation:

PH = 7.4 + ㏒(0.07/0.07)

∴PH = 7.4 

c) after addition of 35 mL of KOH:

we will use the H-H equation again as we have a buffer solution:

PH = Pka + ㏒[salt/acid]

first, we have to get moles HCIO = molarity * volume 

                                                        = 0.21 M * 0.05L

                                                        = 0.0105 moles

then moles KOH = molarity * volume
                            =  0.22 M* 0.035 L 

                            =0.0077 moles 

∴ moles of HCIO remaining = 0.0105 - 0.0077=  8 x 10^-5

when the total volume = 0.05L + 0.035L = 0.085 L

∴ the molarity of HCIO = moles HCIO remaining / total volume 

                                      = 8 x 10^-5 / 0.085

                                      = 9.4 x 10^-4 M

and the molarity of KCIO = moles KCIO / total volume

                                          = 0.0077M / 0.085L

                                          = 0.09 M

by substitution:

PH = 7.4 + ㏒( 0.09 /9.4 x 10^-4)

∴PH = 8.38

D)After addition of 50 mL:

from the above solutions, we can see that 0.0105 mol HCIO reacting with 0.0105 mol KOH to produce 0.0105 mol KCIO which dissolve in 0.1 L (0.5L+0.5L) of the solution.

the molarity of KCIO = moles KCIO / total volume

                                   = 0.0105mol / 0.1 L

                                   = 0.105 M

when Ka = KW / Kb

∴Kb = 1 x 10^-14 / 4 x 10^-8

       = 2.5 x 10^-7

by using Kb expression:

Kb = [CIO-] [OH-] / [KCIO]

when [CIO-] =[OH-] so we can substitute by [OH-] instead of [CIO-]

Kb = [OH-]^2 / [KCIO] 

2.5 x 10^-7 = [OH-]^2 /0.105

∴[OH-] = 0.00016 M

POH = -㏒[OH-]

∴POH = -㏒0.00016

           = 3.8
∴PH = 14- POH

        =14 - 3.8

PH = 10.2

e) after addition 60 mL of KOH:

when KOH neutralized all the HCIO so, to get the molarity of KOH solution

M1*V1= M2*V2

 when M1 is the molarity of KOH solution

V1 is the total volume = 0.05 + 0.06 = 0.11 L

M2 = 0.21 M 

V2 is the excess volume added  of KOH = 0.01L

so by substitution:

M1 * 0.11L = 0.21*0.01L

∴M1 =0.02 M

∴[KOH] = [OH-] = 0.02 M

∴POH = -㏒[OH-]

           = -㏒0.02 

           = 1.7

∴PH = 14- POH

       = 14- 1.7 

      = 12.3 
natka813 [3]3 years ago
4 0

PH = 7.58

<h2>Further Explanation </h2>

KOH will interact with HClO to provide KClO. you may have an answer that contains unreacted HClO and KOH. this is often a solution.

<h3>Equation: </h3>

HClO + KOH → KClO + H2O

HClO reacts with KOH in a very 1: 1 molar ratio

Mole of acid in 50 ml of an answer of 0.150 m = 50/1000 * 0,150 = 0.0075 mole of acid

Mole of KOH in 30 ml of 150 M solution = 30/1000 * 0,150 = 0.0045 mole of KOH

This reacts to provide 0.0045 moles of KClO and there are 0.0030 moles of HClO unreacted

The volume of the answer = 50 ml + 30 ml = 80 ml = 0.080 l

Deposition of acid in solution = 0.0030 / 0.080 = 0.0375M

KClO deposit in solution = 0.0045 / 0.080 = 0.0562 m

<h3>Using the Henderson-Hasselbalch equation, we will calculate pH; </h3>

pKa HClO = -log (4.0 * 10 ^ -8) = 7.40

PH = pKa + log ([KClO] / [HClO])

PH = 7.40 + notes (0.0562 / 0.0375)

PH = 7.40 + 1.50 notes

PH = 7.40+ 0.18

PH = 7.58

Learn More

Mole of Acid  brainly.com/question/9465562

HClO  brainly.com/question/12355703

Details

Grade: College

Subject: Chemistry

Keyword: mole, acid, HClO

You might be interested in
Why are stars special sources of light?(2 points)
Alex787 [66]

Answer:

They give off their own light energy

Explanation:

I'm taking astronomy and I answered this questions not too long ago

8 0
2 years ago
How many atoms are found in 3.45g of CO2?
USPshnik [31]

<u>Answer:</u> The number of carbon and oxygen atoms in the given amount of carbon dioxide is 4.72\times 10^{22} and 9.44\times 10^{22} respectively

<u>Explanation:</u>

To calculate the number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}

Given mass of carbon dioxide gas = 3.45 g

Molar mass of carbon dioxide gas = 44 g/mol

Putting values in above equation, we get:

\text{Moles of carbon dioxide gas}=\frac{3.45g}{44g/mol}=0.0784mol

1 mole of carbon dioxide gas contains 1 mole of carbon and 2 moles of oxygen atoms.

According to mole concept:

1 mole of a compound contains 6.022\time 10^{23} number of molecules

So, 0.0784 moles of carbon dioxide gas will contain 1\times 0.0784\times 6.022\times 10^{23}=4.72\times 10^{22} number of carbon atoms and 2\times 0.0784\times 6.022\times 10^{23}=9.44\times 10^{22} number of oxygen atoms

Hence, the number of carbon and oxygen atoms in the given amount of carbon dioxide is 4.72\times 10^{22} and 9.44\times 10^{22} respectively

3 0
3 years ago
Atomic mass is typically expressed in
Andre45 [30]

Answer:

amu

Explanation:

Please mark as brainleist

8 0
2 years ago
Read 2 more answers
List three differences between liquids and gases
Annette [7]

Answer:

Gas:

- No fixed shape or volume

- Molecules are very loosely packed

- Flows in all the directions

Liquid:

- No fixed shape but has volume

- Molecules are closely packed

- Always flows from higher to lower level

3 0
2 years ago
The ability of an atom to attract the shared electrons in a covalent bond is its
DochEvi [55]
<span>The ability of an atom to attract the shared electrons in a covalent bond is its:</span>electronegativity.
8 0
3 years ago
Other questions:
  • Post your responses to the following:
    9·1 answer
  • How many grams are in 0.36 moles of CCl4
    15·1 answer
  • 2. Atoms are stable and not likely to react when.
    8·1 answer
  • The atomic mass of hydrogen is one. True False
    11·2 answers
  • Which of the following apply to gases. Select all that apply. Gas collisions are elastic. Gases mix faster than solids or liquid
    12·2 answers
  • Which of the following is not one of the three common forms of matter
    11·1 answer
  • Historically the troubadour was a ____.
    10·1 answer
  • Help????????????????????
    10·1 answer
  • Match the following terms to their correct examples
    11·1 answer
  • What's a beaker with a hole in it where a tube can be inserted to be connected to another beaker called?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!