1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
3 years ago
11

Calculate the pH for each of the following cases in the titration of 50.0 mL of 0.210 M HClO(aq) with 0.210 M KOH(aq).

Chemistry
2 answers:
Degger [83]3 years ago
8 0
a) before addition of any KOH : 

when we use the Ka equation & Ka = 4 x 10^-8 : 

Ka = [H+]^2 / [ HCIO]

by substitution:

4 x 10^-8 = [H+]^2 / 0.21

[H+]^2 = (4 x 10^-8) * 0.21

           = 8.4 x 10^-9

[H+] = √(8.4 x 10^-9)

       = 9.2 x 10^-5 M

when PH = -㏒[H+]

   PH = -㏒(9.2 x 10^-5)

        = 4  

b)After addition of 25 mL of KOH: this produces a buffer solution 

So, we will use Henderson-Hasselbalch equation to get PH:

PH = Pka +㏒[Salt]/[acid]


first, we have to get moles of HCIO= molarity * volume

                                                           =0.21M * 0.05L

                                                           = 0.0105 moles

then, moles of KOH = molarity * volume 

                                  = 0.21 * 0.025

                                  =0.00525 moles 

∴moles HCIO remaining = 0.0105 - 0.00525 = 0.00525

and when the total volume is = 0.05 L + 0.025 L =  0.075 L

So the molarity of HCIO = moles HCIO remaining / total volume

                                        = 0.00525 / 0.075

                                        =0.07 M

and molarity of KCIO = moles KCIO / total volume

                                    = 0.00525 / 0.075

                                    = 0.07 M

and when Ka = 4 x 10^-8 

∴Pka =-㏒Ka

         = -㏒(4 x 10^-8)

         = 7.4 

by substitution in H-H equation:

PH = 7.4 + ㏒(0.07/0.07)

∴PH = 7.4 

c) after addition of 35 mL of KOH:

we will use the H-H equation again as we have a buffer solution:

PH = Pka + ㏒[salt/acid]

first, we have to get moles HCIO = molarity * volume 

                                                        = 0.21 M * 0.05L

                                                        = 0.0105 moles

then moles KOH = molarity * volume
                            =  0.22 M* 0.035 L 

                            =0.0077 moles 

∴ moles of HCIO remaining = 0.0105 - 0.0077=  8 x 10^-5

when the total volume = 0.05L + 0.035L = 0.085 L

∴ the molarity of HCIO = moles HCIO remaining / total volume 

                                      = 8 x 10^-5 / 0.085

                                      = 9.4 x 10^-4 M

and the molarity of KCIO = moles KCIO / total volume

                                          = 0.0077M / 0.085L

                                          = 0.09 M

by substitution:

PH = 7.4 + ㏒( 0.09 /9.4 x 10^-4)

∴PH = 8.38

D)After addition of 50 mL:

from the above solutions, we can see that 0.0105 mol HCIO reacting with 0.0105 mol KOH to produce 0.0105 mol KCIO which dissolve in 0.1 L (0.5L+0.5L) of the solution.

the molarity of KCIO = moles KCIO / total volume

                                   = 0.0105mol / 0.1 L

                                   = 0.105 M

when Ka = KW / Kb

∴Kb = 1 x 10^-14 / 4 x 10^-8

       = 2.5 x 10^-7

by using Kb expression:

Kb = [CIO-] [OH-] / [KCIO]

when [CIO-] =[OH-] so we can substitute by [OH-] instead of [CIO-]

Kb = [OH-]^2 / [KCIO] 

2.5 x 10^-7 = [OH-]^2 /0.105

∴[OH-] = 0.00016 M

POH = -㏒[OH-]

∴POH = -㏒0.00016

           = 3.8
∴PH = 14- POH

        =14 - 3.8

PH = 10.2

e) after addition 60 mL of KOH:

when KOH neutralized all the HCIO so, to get the molarity of KOH solution

M1*V1= M2*V2

 when M1 is the molarity of KOH solution

V1 is the total volume = 0.05 + 0.06 = 0.11 L

M2 = 0.21 M 

V2 is the excess volume added  of KOH = 0.01L

so by substitution:

M1 * 0.11L = 0.21*0.01L

∴M1 =0.02 M

∴[KOH] = [OH-] = 0.02 M

∴POH = -㏒[OH-]

           = -㏒0.02 

           = 1.7

∴PH = 14- POH

       = 14- 1.7 

      = 12.3 
natka813 [3]3 years ago
4 0

PH = 7.58

<h2>Further Explanation </h2>

KOH will interact with HClO to provide KClO. you may have an answer that contains unreacted HClO and KOH. this is often a solution.

<h3>Equation: </h3>

HClO + KOH → KClO + H2O

HClO reacts with KOH in a very 1: 1 molar ratio

Mole of acid in 50 ml of an answer of 0.150 m = 50/1000 * 0,150 = 0.0075 mole of acid

Mole of KOH in 30 ml of 150 M solution = 30/1000 * 0,150 = 0.0045 mole of KOH

This reacts to provide 0.0045 moles of KClO and there are 0.0030 moles of HClO unreacted

The volume of the answer = 50 ml + 30 ml = 80 ml = 0.080 l

Deposition of acid in solution = 0.0030 / 0.080 = 0.0375M

KClO deposit in solution = 0.0045 / 0.080 = 0.0562 m

<h3>Using the Henderson-Hasselbalch equation, we will calculate pH; </h3>

pKa HClO = -log (4.0 * 10 ^ -8) = 7.40

PH = pKa + log ([KClO] / [HClO])

PH = 7.40 + notes (0.0562 / 0.0375)

PH = 7.40 + 1.50 notes

PH = 7.40+ 0.18

PH = 7.58

Learn More

Mole of Acid  brainly.com/question/9465562

HClO  brainly.com/question/12355703

Details

Grade: College

Subject: Chemistry

Keyword: mole, acid, HClO

You might be interested in
What is the relationship between metals and the number of electrons in the outer level?
gayaneshka [121]
Elements in group 1-2, 13-18, the number of valence electrons is related to the group number. For example, in the first group, the alkali metals there is one valence electron, however in group 13, there are 3 valence electrons. Valence electrons are also known as the outershell electrons.
4 0
3 years ago
I need help ASAP!!!!! What happens to water when it changes to ice?
Gre4nikov [31]

- It's density increases

- mass increases

- volume increases

Hope this helps!

6 0
3 years ago
Read 2 more answers
Chlorine can be prepared in the laboratory by the reaction of manganese dioxide with hydrochloric acid, HCl(aq), as
zubka84 [21]

Answer:

Explanation:

MnO₂(s) + 4 HCl(aq)  = MnCl₂(aq) + 2 H₂O(l) + Cl₂

87 g                                                                     22.4 x 10³ mL

volume of given chlorine gas at NTP or at 760 Torr and 273 K

=  175 x ( 273 + 25 ) x 715 / (273 x 760 )

= 179.71 mL

22.4 x 10³ mL of chlorine requires 87 g of MnO₂

179.4 mL of chlorine will require    87 x 179.4 / 22.4 x 10³ g

= 696.77 x 10⁻³ g

= 696.77 mg .

6 0
3 years ago
Binary ionic compound of calcium and oxygen
Vlad1618 [11]
Socratic helps for you page
7 0
3 years ago
What is the mass of 4.56 moles of copper (ii) fluoride​
musickatia [10]

Answer:

463.0 g.

Explanation:

  • We can use the following relation:

<em>n = mass/molar mass.</em>

where, n is the mass of copper(ii) fluoride​ (m = 4.56 mol),

mass of copper(ii) fluoride​ = ??? g.

molar mass of copper(ii) fluoride​ = 101.543 g/mol.

∴ mass of copper(ii) fluoride​ = (n)(molar mass) = (4.56 mol)(101.543 g/mol) = 463.0 g.

7 0
3 years ago
Other questions:
  • How many of the following elements have 2 unpaired electrons in the ground state? C Te Hf Si
    14·1 answer
  • Which of the following aqueous solutions would have the greatest freezing-point depression?
    6·1 answer
  • Oxygen and sulfur are both in the family
    11·1 answer
  • Answer the question please
    14·1 answer
  • If velocity is positive, which would most likely yield a negative acceleration?
    6·2 answers
  • When three pairs of electrons are shared in a molecule, what shape will the molecule be?
    14·2 answers
  • Which of these is a biomass energy source the sun sugarcane natutal gas water
    14·1 answer
  • Word equation for Silver being added to sulphuric acid
    7·1 answer
  • __________ is required to make a wave.
    5·1 answer
  • Define climate and weather. What is climate change? Why is it important to know about climate change?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!