1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
3 years ago
11

Calculate the pH for each of the following cases in the titration of 50.0 mL of 0.210 M HClO(aq) with 0.210 M KOH(aq).

Chemistry
2 answers:
Degger [83]3 years ago
8 0
a) before addition of any KOH : 

when we use the Ka equation & Ka = 4 x 10^-8 : 

Ka = [H+]^2 / [ HCIO]

by substitution:

4 x 10^-8 = [H+]^2 / 0.21

[H+]^2 = (4 x 10^-8) * 0.21

           = 8.4 x 10^-9

[H+] = √(8.4 x 10^-9)

       = 9.2 x 10^-5 M

when PH = -㏒[H+]

   PH = -㏒(9.2 x 10^-5)

        = 4  

b)After addition of 25 mL of KOH: this produces a buffer solution 

So, we will use Henderson-Hasselbalch equation to get PH:

PH = Pka +㏒[Salt]/[acid]


first, we have to get moles of HCIO= molarity * volume

                                                           =0.21M * 0.05L

                                                           = 0.0105 moles

then, moles of KOH = molarity * volume 

                                  = 0.21 * 0.025

                                  =0.00525 moles 

∴moles HCIO remaining = 0.0105 - 0.00525 = 0.00525

and when the total volume is = 0.05 L + 0.025 L =  0.075 L

So the molarity of HCIO = moles HCIO remaining / total volume

                                        = 0.00525 / 0.075

                                        =0.07 M

and molarity of KCIO = moles KCIO / total volume

                                    = 0.00525 / 0.075

                                    = 0.07 M

and when Ka = 4 x 10^-8 

∴Pka =-㏒Ka

         = -㏒(4 x 10^-8)

         = 7.4 

by substitution in H-H equation:

PH = 7.4 + ㏒(0.07/0.07)

∴PH = 7.4 

c) after addition of 35 mL of KOH:

we will use the H-H equation again as we have a buffer solution:

PH = Pka + ㏒[salt/acid]

first, we have to get moles HCIO = molarity * volume 

                                                        = 0.21 M * 0.05L

                                                        = 0.0105 moles

then moles KOH = molarity * volume
                            =  0.22 M* 0.035 L 

                            =0.0077 moles 

∴ moles of HCIO remaining = 0.0105 - 0.0077=  8 x 10^-5

when the total volume = 0.05L + 0.035L = 0.085 L

∴ the molarity of HCIO = moles HCIO remaining / total volume 

                                      = 8 x 10^-5 / 0.085

                                      = 9.4 x 10^-4 M

and the molarity of KCIO = moles KCIO / total volume

                                          = 0.0077M / 0.085L

                                          = 0.09 M

by substitution:

PH = 7.4 + ㏒( 0.09 /9.4 x 10^-4)

∴PH = 8.38

D)After addition of 50 mL:

from the above solutions, we can see that 0.0105 mol HCIO reacting with 0.0105 mol KOH to produce 0.0105 mol KCIO which dissolve in 0.1 L (0.5L+0.5L) of the solution.

the molarity of KCIO = moles KCIO / total volume

                                   = 0.0105mol / 0.1 L

                                   = 0.105 M

when Ka = KW / Kb

∴Kb = 1 x 10^-14 / 4 x 10^-8

       = 2.5 x 10^-7

by using Kb expression:

Kb = [CIO-] [OH-] / [KCIO]

when [CIO-] =[OH-] so we can substitute by [OH-] instead of [CIO-]

Kb = [OH-]^2 / [KCIO] 

2.5 x 10^-7 = [OH-]^2 /0.105

∴[OH-] = 0.00016 M

POH = -㏒[OH-]

∴POH = -㏒0.00016

           = 3.8
∴PH = 14- POH

        =14 - 3.8

PH = 10.2

e) after addition 60 mL of KOH:

when KOH neutralized all the HCIO so, to get the molarity of KOH solution

M1*V1= M2*V2

 when M1 is the molarity of KOH solution

V1 is the total volume = 0.05 + 0.06 = 0.11 L

M2 = 0.21 M 

V2 is the excess volume added  of KOH = 0.01L

so by substitution:

M1 * 0.11L = 0.21*0.01L

∴M1 =0.02 M

∴[KOH] = [OH-] = 0.02 M

∴POH = -㏒[OH-]

           = -㏒0.02 

           = 1.7

∴PH = 14- POH

       = 14- 1.7 

      = 12.3 
natka813 [3]3 years ago
4 0

PH = 7.58

<h2>Further Explanation </h2>

KOH will interact with HClO to provide KClO. you may have an answer that contains unreacted HClO and KOH. this is often a solution.

<h3>Equation: </h3>

HClO + KOH → KClO + H2O

HClO reacts with KOH in a very 1: 1 molar ratio

Mole of acid in 50 ml of an answer of 0.150 m = 50/1000 * 0,150 = 0.0075 mole of acid

Mole of KOH in 30 ml of 150 M solution = 30/1000 * 0,150 = 0.0045 mole of KOH

This reacts to provide 0.0045 moles of KClO and there are 0.0030 moles of HClO unreacted

The volume of the answer = 50 ml + 30 ml = 80 ml = 0.080 l

Deposition of acid in solution = 0.0030 / 0.080 = 0.0375M

KClO deposit in solution = 0.0045 / 0.080 = 0.0562 m

<h3>Using the Henderson-Hasselbalch equation, we will calculate pH; </h3>

pKa HClO = -log (4.0 * 10 ^ -8) = 7.40

PH = pKa + log ([KClO] / [HClO])

PH = 7.40 + notes (0.0562 / 0.0375)

PH = 7.40 + 1.50 notes

PH = 7.40+ 0.18

PH = 7.58

Learn More

Mole of Acid  brainly.com/question/9465562

HClO  brainly.com/question/12355703

Details

Grade: College

Subject: Chemistry

Keyword: mole, acid, HClO

You might be interested in
Which of the following terms means that metals can be pulled into thin strands or wires? [like copper]
Dimas [21]

Answer:

D

Explanation:

plz mark brainliest answer if it helps

5 0
2 years ago
Read 2 more answers
Why is using only clean glassware important?
stealth61 [152]

Good laboratory technique demands clean glassware because the most carefully executed piece of work may give an erroneous result if dirty glassware is used. In all instances, glassware must be physically and chemically clean and in many cases, it must be bacteriologic-ally clean or sterile.

6 0
3 years ago
Read 2 more answers
Which ion in the ground state has the same electron configuration as an atom of
Sergeu [11.5K]

Answer:

Ca^+2

Explanation:

Hence, the correct option is A.

4 0
3 years ago
State the oxidation number assigned to each bold element in the formula: NH4+1 a 3 b -3 c -1 d 6
Leya [2.2K]
The fomula is NH4 (1+)


There are only two elements N and H.


As per oxidation state rules, the most electronegative element will have a negative oxidation state and the other element will have a positive oxidation state.


N is more electronative than H, so H will have a positive oxidation state and nitrogen will have a negative oxidation state.


You can also use the rule that states the hydrogen mostly has 1+ oxidation state,except when it is bonded to metals.


In conclusion the oxidation state of H in NH4 (1+) is 1+.


Now you must know that the sum of the oxidations states equals the charge of the ion, which in this case is 1+.


That implies that 4* (1+)  + x =   1+


=> x = (1+) - 4(+) = 3-


Answer:  the oxidation state of N is 3-, that is the option b.
8 0
3 years ago
An experiment shows that a 236 mL gas sample has a mass of 0.443 g at a pressure of 740 mmHg and a temperature of 22 ∘C. What is
aleksley [76]

Answer:

49.2 g/mol

Explanation:

Let's first take account of what we have and convert them into the correct units.

Volume= 236 mL x (\frac{1 L}{1000 mL}) = .236 L

Pressure= 740 mm Hg x (\frac{1 atm}{760 mm Hg})= 0.97 atm

Temperature= 22C + 273= 295 K

mass= 0.443 g

Molar mass is in grams per mole, or MM= \frac{mass}{moles} or MM= \frac{m}{n}. They're all the same.

We have mass (0.443 g) we just need moles. We can find moles with the ideal gas constant PV=nRT. We want to solve for n, so we'll rearrange it to be

n=\frac{PV}{RT}, where R (constant)= 0.082 L atm mol-1 K-1

Let's plug in what we know.

n=\frac{(0.97 atm)(0.236 L)}{(0.082)(295K)}

n= 0.009 mol

Let's look back at MM= \frac{m}{n} and plug in what we know.

MM= \frac{0.443 g}{0.009 mol}

MM= 49.2 g/mol

3 0
3 years ago
Other questions:
  • Can anyone help with properties of non-metals?
    9·1 answer
  • Draw the structural formula of trans-1,3-dimethylcyclohexane in the chair conformation. Choose a chair from the Templates toolba
    10·1 answer
  • Consider the unbalanced equation for the combustion of hexane:
    14·1 answer
  • Which pair of elements do you expect to be most similar in their chemical properties?
    11·1 answer
  • The spread of which pathogens is most likely prevented by vaccines?
    8·1 answer
  • On a graph , which type of line shows a direct proportion?
    8·2 answers
  • Alkenes can be converted to alcohols by hydroboration‑oxidation. Draw the structure of the alcohol or alcohols formed in the rea
    13·1 answer
  • The formula for binary ionic compound formed between cesium and fluorine
    12·1 answer
  • Why cant you ice skate on a lake when it is not frozen​
    8·1 answer
  • If you wanted to make .5 L of a 1 mole/L (M) of MgSO4 solution, how many grams of MgSO4 would you use?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!