Answer:
Partial pressure N₂ . (Partial pressure H₂O)² / (Partial pressure H₂)² . (Partial pressure NO)² = Kp
Explanation:
The reaction is:
2NO + 2H₂ → N₂ + 2H₂O
The expression for Kp (pressure equilibrium constant) would be:
Partial pressure N₂ . (Partial pressure H₂O)² / (Partial pressure H₂)² . (Partial pressure NO)²
There is another expression for Kp, where you work with Kc (equilibrium constant)
Kp = Kc (R.T)^Δn
where R is the Ideal Gases constant
T° is absolute temperature
Δn = moles of gases formed - moles of gases, I had initially
<u>Answer:</u> The equilibrium concentration of water is 0.597 M
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For a general chemical reaction:

The expression for
is written as:
![K_{c}=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
The concentration of pure solids and pure liquids are taken as 1 in the expression.
For the given chemical reaction:

The expression of
for above equation is:
![K_c=\frac{[H_2O]^2}{[H_2S]^2\times [O_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%5BH_2S%5D%5E2%5Ctimes%20%5BO_2%5D%7D)
We are given:
![[H_2S]_{eq}=0.671M](https://tex.z-dn.net/?f=%5BH_2S%5D_%7Beq%7D%3D0.671M)
![[O_2]_{eq}=0.587M](https://tex.z-dn.net/?f=%5BO_2%5D_%7Beq%7D%3D0.587M)

Putting values in above expression, we get:
![1.35=\frac{[H_2O]^2}{(0.671)^2\times 0.587}](https://tex.z-dn.net/?f=1.35%3D%5Cfrac%7B%5BH_2O%5D%5E2%7D%7B%280.671%29%5E2%5Ctimes%200.587%7D)
![[H_2O]=\sqrt{(1.35\times 0.671\times 0.671\times 0.587)}=0.597M](https://tex.z-dn.net/?f=%5BH_2O%5D%3D%5Csqrt%7B%281.35%5Ctimes%200.671%5Ctimes%200.671%5Ctimes%200.587%29%7D%3D0.597M)
Hence, the equilibrium concentration of water is 0.597 M
Sedimentary rocks. Not sure though
Answer:
0.607mol
Explanation:
n(AR) = mass / molar máss
= 24.3 /40
=0.607
Answer:
17.5609g
Explanation:
According to the question, a sample of mass 6.814 grams is added to another sample weighing 0.08753 grams. That is weight of sample 1 + weight of sample 2;
6.814 + 0.08753 = 6.90153grams
Next, the subsequent mixture is then divided into exactly 3 equal parts i.e. 6.90153grams divided by 3
= 6.90153/3
= 2.30051grams.
One of the equal parts is 2.30051grams, which is then multiplied by 7.6335 times I.e. 2.30051 × 7.6335 = 17.5609grams
Therefore, the final mass is 17.5609grams