Answer:
The vertical columns are called groups.
Explanation:
Periodic table consist of vertical columns and horizontal rows.
Vertical columns are called groups while horizontal rows are called periods.
There are seven periods and 18 groups in periodic table.
The elements in same group have similar properties and can react in a similar way.
The elements in same group have same number of valance electrons that's why their reactivity is same.
Consider the example of alkaline earth metals. They are present in group two and have same number of valance electrons (two valance electrons).
They react with oxygen and form oxide.
2Ba + O₂ → 2BaO
2Mg + O₂ → 2MgO
2Ca + O₂ → 2CaO
this oxide form hydroxide when react with water,
BaO + H₂O → Ba(OH)₂
MgO + H₂O → Mg(OH)₂
CaO + H₂O → Ca(OH)₂
With sulfur,
Mg + S → MgS
Ca + S → CaS
Ba + S → BaS
Answer:
b. decreases
C. neither a physical change nor a chemical change
light work
<em>c</em> = 1.14 mol/L; <em>b</em> = 1.03 mol/kg
<em>Molar concentration
</em>
Assume you have 1 L solution.
Mass of solution = 1000 mL solution × (1.19 g solution/1 mL solution)
= 1190 g solution
Mass of NaHCO3 = 1190 g solution × (7.06 g NaHCO3/100 g solution)
= 84.01 g NaHCO3
Moles NaHCO3 = 84.01 g NaHCO3 × (1 mol NaHCO3/74.01 g NaHCO3)
= 1.14 mol NaHCO3
<em>c</em> = 1.14 mol/1 L = 1.14 mol/L
<em>Molal concentration</em>
Mass of water = 1190 g – 84.01 g = 1106 g = 1.106 kg
<em>b</em> = 1.14 mol/1.106 kg = 1.03 mol/kg
Answer:
3.5 atm
Explanation:
As stated in the question pressure is required to counteract the natural tendency for water to dilute the more concentrated solution. The difference in concentrations will give us the answer using the osmotic pressure equation.
π = ( n/v) RT where n/v is the molarity (mol/L), R is the gas constant and T is the temperature.
The difference in osmotic pressure of the solutions is:
Δπ = Δ c RT where c is the difference in molar concentrations.
pressure required = Δπ = (0.190 - 0.048) M x 0.821 Latm/Kmol x 298 K
= 3.47 atm