Answer:
18.06 × 10²³ molecules
Explanation:
Add the two amounts of molecules together.
6.02 × 10²³ + 12.04 × 10²³ = 18.06 × 10²³
You will have 18.06 × 10²³ molecules in the vessel when the reaction is complete. This is because of the Law of Conservation of Mass. Mass is neither created nor destroyed in chemical reactions. You will have the exact number of molecules in the reaction vessel as you did in the beginning. The types of molecules may change, but the number will stay the same.
Answer:

Explanation:
Hello,
In this case, for the given molarity and volume of such solution, the moles of sodium sulfate are computed below:

Now, by using the Avogadro's number, the ions result:

Best regards.
Molars are cavities in your teeth the dentists will scrape them out and fill them in for you at your earliest convinence need help with anything else while im here i can assist you!
Answer: CoBr3 < K2SO4 < NH4 Cl
Justification:
1) The depression of the freezing point of a solution is a colligative property, which means that it depends on the number of particles of solute dissolved.
2) The formula for the depression of freezing point is:
ΔTf = i * Kf * m
Where i is the van't Hoof factor which accounts for the dissociation of the solute.
Kf is the freezing molal constant and only depends on the solvent
m is the molality (molal concentration).
3) Since, you are assuming equal concentrations and complete dissociation of the given solutes, the solute with more ions in the molecular formula will result in the solution with higher depression of the freezing point (lower freezing point).
4) These are the dissociations of the given solutes:
a) NH4 Cl (s) --> NH4(+)(aq) + Cl(-) (aq) => 1 mol --> 2 moles
b) Co Br3 (s) --> Co(3+) (aq) + 3Br(-)(aq) => 1 mol --> 4 moles
c) K2SO4 (s) --> 2K(+) (aq) + SO4 (2-) (aq) => 1 mol --> 3 moles
5) So, the rank of solutions by their freezing points is:
CoBr3 < K2SO4 < NH4 Cl