Answer:
The experimental feature of the MALDI-MS technique which allows the separation of ions formed after the adduction of tissue molecules:
B) Velocity of ions depends on the ion mass-to-charge ratio.
Explanation:
- The option a is not correct as distance traveled by ions doesn't depend upon the ion charge rather it depends upon time for which you leave the sample to run.
- The option b is correct as velocity of ions depends on the ion mass-to-charge ratio because separation is done due to mass to charge ratio feature.
- The option c is incorrect as time of travel is not inversely proportional to the ion-to-mass ratio because the ion will move across the gel until you stop the electric field.
- The option d is not correct as electric field between MALDI plate and MS analyzer is though uniform but this feature doesn't allow the separation of ions.
Answer:
The answer is covalent bond
Explanation:
when oxygen atom and two hydrogen atoms are combined, water molecule is formed according to the equation;
2H2 + O2 ==> 2H2O
Water is a covalent compound.
A covalent bond, is a chemical bond that involves the sharing of electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs, and the stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding.
For many molecules, the sharing of electrons allows each atom to attain the equivalent of a full outer shell, corresponding to a stable electronic configuration.
<h3>0.020 × 1000 × 100</h3>
<h2>= 2000 mg of Sn</h2>
hope that helps !
Mendeleev's periodic table
Dmitri Mendeleev
Like many scientists working at the end of the 19th-century the Russian chemist Dmitri Mendeleev (1834-1907) was looking for ways to organise the known elements. Mendeleev published his first periodic table of the elements in 1869.
Features of Mendeleev's tables
Mendeleev arranged the elements in order of increasing relative atomic mass. When he did this he noted that the chemical properties of the elements and their compounds showed a periodic trend. He then arranged the elements by putting those with similar properties below each other into groups. To make his classification work Mendeleev made a few changes to his order:
he left gaps for yet to be discovered elements
he switched the order of a few elements to keep the groups consistent
It helped be able to look more closely at the the cells