Answer:
P' = 41.4 mmHg → Vapor pressure of solution
Explanation:
ΔP = P° . Xm
ΔP = Vapor pressure of pure solvent (P°) - Vapor pressure of solution (P')
Xm = Mole fraction for solute (Moles of solvent /Total moles)
Firstly we determine the mole fraction of solute.
Moles of solute → Mass . 1 mol / molar mass
20.2 g . 1 mol / 342 g = 0.0590 mol
Moles of solvent → Mass . 1mol / molar mass
60.5 g . 1 mol/ 18 g = 3.36 mol
Total moles = 3.36 mol + 0.0590 mol = 3.419 moles
Xm = 0.0590 mol / 3.419 moles → 0.0172
Let's replace the data in the formula
42.2 mmHg - P' = 42.2 mmHg . 0.0172
P' = - (42.2 mmHg . 0.0172 - 42.2 mmHg)
P' = 41.4 mmHg
A chemical reaction is the process in which atoms present in the starting substances rearrange to give new chemical combinations present in the substances formed by the reaction. These starting substances of a chemical reaction are called the reactants, and the new substances that result are called the products.
Answer:
88,88 % de O y 11,11 % de H
Explanation:
La composición porcentual se define como la masa que hay de cada mol de átomo en 100g. Las moles de agua en 100g son:
<em>Masa molar agua:</em>
2H = 2*1g/mol = 2g/mol
1O = 1*16g/mol = 16g/mol
Masa molar = 2 + 16 = 18g/mol
100g H2O * (1mol / 18g) = 5.556 moles H2O.
Moles de hidrógeno:
5.556 moles H2O * (2mol H / 1mol H2O) = 11.11 moles H
Moles Oxígeno = Moles H2O = 5.556 moles
La masa de hidrógeno es:
11.11mol * (1g/mol) 11.11g H
La masa de oxígeno es:
5.556 mol * (16g / 1mol) = 88.89g O
Así, el porcentaje de O es 88.89% y el de H es 11.11%. La opción correcta es:
<h3>88,88 % de O y 11,11 % de H</h3>
Answer:
He is probably studying <u>Geomorphology.
</u>
Explanation:
Geology is the science that studies the composition, structure, dynamics, and history of planet Earth, the processes by which it has evolved including everything that has to do with its natural resources and with this the processes that affect the surface, and therefore, the environment.
Geomorphology is a branch of geosciences, more specifically geography and geology. One of his most interesting models explains the ways in which the earth's surface is the result of a consistent dynamic balance.