Answer:
W = -1844.513 J
Explanation:
GIVEN DATA:
mass of spider man is m 74 kg
vertical displacement if spider is 11 m
final displacement = 11 cos 60.6 = - 6.753 m
change in displacement is = -6.753 - (-11) = 4.25 m
gravity force act on spiderman is f = mg = 74 × 9.8 = 725.2 N
work done by gravity is 

where 180 is the angle between spiderman weight and displacement
W = -1844.513 J
Answer:
I = (1.80 × 10⁻¹⁰) A
Explanation:
From Biot Savart's law, the magnetic field formula is given as
B = (μ₀I)/(2πr)
B = magnetic field = (1.0 × 10⁻¹⁵) T
μ₀ = magnetic constant = (4π × 10⁻⁷) H/m
r = 3.6 cm = 0.036 m
(1.0 × 10⁻¹⁵) = (4π × 10⁻⁷ × I)/(2π × 0.036)
4π × 10⁻⁷ × I = 1.0 × 10⁻¹⁵ × 2π × 0.036
I = (1.80 × 10⁻¹⁰) A
Hope this Helps!!!
The new acceleration is 
Explanation:
We can answer this problem by applying Newton's second law, which states that:

where
F is the net force on an object
m is the mass of the object
a is its acceleration
The equation can be rewritten as

In this problem, the initial acceleration is

Later:
- The net force is tripled: 
- The mass is halved: 
Therefore, the new acceleration is:

which means that the new acceleration is 6 times the original acceleration, therefore

Learn more about acceleration:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
Explanation:
Given that,
Weight of water = 25 kg
Temperature = 23°C
Weight of mass = 32 kg
Distance = 5 m
(a). We need to calculate the amount of work done on the water
Using formula of work done



The amount of work done on the water is 1568 J.
(b). We need to calculate the internal-energy change of the water
Using formula of internal energy
The change in internal energy of the water equal to the amount of the work done on the water.


The change in internal energy is 1568 J.
(c). We need to calculate the final temperature of the water
Using formula of the change internal energy





The final temperature of the water is 23.01°C.
(d). The amount of heat removed from the water to return it to it initial temperature is the change in internal energy.
The amount of heat is 1568 J.
Hence, This is the required solution.
Answer:
μ = 0.33
Equal to 3.2 m/s²
Explanation:
Draw a free body diagram of the block. There are three forces:
Normal force N pushing up.
Weight force mg pulling down.
Friction force Nμ pushing opposite the direction of motion.
Sum of forces in the y direction.
∑F = ma
N − mg = 0
N = mg
Sum of forces in the x direction.
∑F = ma
Nμ = ma
Substitute.
mgμ = ma
μ = a/g
μ = (3.2 m/s²) / (9.8 m/s²)
μ = 0.33
As found earlier, the acceleration is a = gμ. Since g and μ are constant, a is also constant, so it does not change with velocity.