Answer:
Acceleration = 0.0282 m/s^2
Distance = 13.98 * 10^12 m
Explanation:
we will apply the energy theorem
work done = ΔK.E ( change in Kinetic energy ) ---- ( 1 )
<em>where :</em>
work done = p * t
= 15 * 10^6 watts * ( 1 year ) = 473040000 * 10^6 J
( note : convert 1 year to seconds )
and ΔK.E = 1/2 mVf^2 given ; m = 1200 kg and initial V = 0
<u>back to equation 1 </u>
473040000 * 10^6 = 1/2 mv^2
Vf^2 = 2(473040000 * 10^6 ) / 1200
∴ Vf = 887918.92 m/s
<u>i) Determine how fast the rocket is ( acceleration of the rocket )</u>
a = Vf / t
= 887918.92 / ( 1 year )
= 0.0282 m/s^2
<u>ii) determine distance travelled by rocket </u>
Vf^2 - Vi^2 = 2as
Vi = 0
hence ; Vf^2 = 2as
s ( distance ) = Vf^2 / ( 2a )
= ( 887918.92 )^2 / ( 2 * 0.0282 )
= 13.98 * 10^12 m
At stp (standard temperature and pressure), the temperature is T=0 C=273 K and the pressure is p=1.00 atm. So we can use the ideal gas law to find the number of moles of helium:

where p is the pressure (1.00 atm), V the volume (20.0 L), n the number of moles, T the temperature (273 K) and

the gas constant. Using the numbers and re-arranging the formula, we can calculate n:
Answer:

Explanation:
Given data
Mass m=67.0 kg
Final Speed vf=8.00 m/s
Initial Speed vi=2.00 m/s
Distance d=25.0 m
Force F=30.0 N
From work-energy theorem we know that the work done equals the change in kinetic energy
W=ΔK=Kf-Ki=1/2mvf²-1/2mvi²
And

So

and we know that the force the sprinter exerted Fsprinter the force of the headwind Fwind=30.0N
So
Answer:
option a.
Explanation:
We can think of an atom as a nucleus (where the protons and neutrons are) and some electrons orbiting it.
We also know that the mass of an electron is a lot smaller than the mass of a proton or the mass of an electron.
So, if all the protons and electrons of an atom are in the nucleus, we know that most of the mass of an atom is in the nucleus of that atom.
Then we define the mass number, which is the total number of protons and neutrons in an atom. Such that the mass of a proton (or a neutron) is almost equal to 1u
Then if we define A as the total number of protons and neutrons, and each one of these weights about 1u
(where u = atomic mass unit)
Then the weight of the nucleus is about A times 1u, or:
A*1u = A atomic mass units.
Then the correct option is:
The mass of the nucleus is approximately EQUAL to the mass number multiplied by __1__ Atomic Mass unit.
option a.
Life darling
☆*:.。. o(≧▽≦)o .。.:*☆