It would be helpful if you gave me a bit more information on what the cars speed is
Answer:
c)
Explanation:
As we know that resultant force is the net force that is acting on the system
As per Newton's II law we know that net force is product of mass and acceleration
so we will have

here we know
m = 80 kg
for circular motion acceleration is given as


now we have



The radial velocity method preferentially detects large planets close to the central star
- what is the Radial velocity:
The radial velocity technique is able to detect planets around low-mass stars, such as M-type (red dwarf) stars.
This is due to the fact that low mass stars are more affected by the gravitational tug of planets.
When a planet orbits around a star, the star wobbles a little.
From this, we can determine the mass of the planet and its distance from the star.
hence we can say that,
option D is correct.
The radial velocity method preferentially detects large planets close to the central star
Learn more about radial velocity here:
<u>brainly.com/question/13117597</u>
#SPJ4
Answer:
<u><em>The truck was moving 16.5 m/s during the time it took to stop, which was 3 seconds. </em></u>
- <u><em>Initial velocity = 33 m/s</em></u>
- <u><em>Final velocity = 0 m/s</em></u>
- <u><em>Average velocity = (33 + 0) / 2 m/s = 16.5 m/s</em></u>
Explanation:
- <u><em>First, how long does it take the truck to come to a complete stop?</em></u>
- <u><em>( 33 m/s ) / ( 11 m / s^2 ) = 3 seconds</em></u>
- <u><em>Then we can look at the average velocity between when the truck started decelerating and when it came to a complete stop. Because the deceleration is constant (always 11m/s^2) we can use this trick.</em></u>