Answer:
-OH
Explanation:
Alcohols generally have the structural formula OH
for example, ethanols structural formula is C2H5OH
To find the mole of a substance, you take the mass divided by the molar mass of that substance~
Wurtz reaction is a special type of organic reaction involving the synthesis of aliphatic hydrocarbons from two molecules of an alkyl halide and two atoms of sodium in the presence of dry ether solution
Please bear in mind that wurtz reaction fails whenever tertiary alkyl halides are used.
An example of Wurtz reaction is given below:
2R – X + 2Na → R–R + 2Na + X−
<h3>What are organic compounds?</h3>
Organic compounds can simply be defined as those classes of organic molecules which contain carbon atoms covalently bonded to hydrogen atoms (C-H bonds).
Below are some few general characteristics of organic compounds:
- All organic compounds contain carbon.
- Most of them are flammable.
- They are all soluble in non-polar solvents
- Most organic compounds / substances are covalently bonded molecules
Some classes of organic compounds are:
So therefore, Wurtz reaction is a special type of organic reaction involving the synthesis of aliphatic hydrocarbons from two molecules of an alkyl halide and two atoms of sodium in the presence of dry ether solution
Learn more about organic compounds:
brainly.com/question/704297
#SPJ1
Answer:
84.8%
Explanation:
Step 1: Given data
Bob measured out 1.60 g of Na. He forms NaCl according to the following equation.
Na + 1/2 Cl₂ ⇒ NaCl
According to this equation, he calculates that 1.60 g of sodium should produce 4.07 g of NaCl, which is the theoretical yield. However, he carries out the experiment and only makes 3.45 g of NaCl, which is the real yield.
Step 2: Calculate the percent yield.
We will use the following expression.
%yield = real yield / theoretical yield × 100%
%yield = 3.45 g / 4.07 g × 100% = 84.8%
Answer:
See image attached and explanation
Explanation:
The stratospheric ozone layer is very important in absorbing high-energy ultraviolet radiation that is harmful to living systems on earth. The concentration of ozone in the stratosphere is determined by both thermal and photochemical pathways for its decomposition. Nitric oxide, NO, is a trace constituent in the stratosphere that reacts with ozone to form nitrogen dioxide, NO2, and the diatomic oxygen molecule. The nitrogen-oxygen bond in NO2 is relatively weak. When an NO2 molecule encounters an oxygen atom, it transfers an oxygen, forming O2 and NO. The chemical reactions involved are formations of NO2 following by reaction of NO2 with atomic oxygen for form NO and O2. The sum of both reactions show that the overall reaction is simply the reaction of ozone with atomic oxygen to form two molecules of molecular oxygen. Hence, NO only serves as a catalyst, it does not undergo a permanent change itself.