Answer:
Yes atoms can accept the electrons from another atom like
Chlorine accept electron from hydrogen.
Explanation:
Answer:
well for me it's
Explanation:
The reflection of the seas
Answer:
[OH⁻] = 4.3 x 10⁻¹¹M in OH⁻ ions.
Explanation:
Assuming the source of the carbonate ion is from a Group IA carbonate salt (e.g.; Na₂CO₃), then 0.115M Na₂CO₃(aq) => 2(0.115)M Na⁺(aq) + 0.115M CO₃²⁻(aq). The 0.115M CO₃²⁻ then reacts with water to give 0.115M carbonic acid; H₂CO₃(aq) in equilibrium with H⁺(aq) and HCO₃⁻(aq) as the 1st ionization step.
Analysis:
H₂CO₃(aq) ⇄ H⁺(aq) + HCO₃⁻(aq); Ka(1) = 4.3 x 10⁻⁷
C(i) 0.115M 0 0
ΔC -x +x +x
C(eq) 0.115M - x x x
≅ 0.115M
Ka(1) = [H⁺(aq)][HCO₃⁻(aq)]/[H₂CO₃(aq)] = [(x)(x)/(0.115)]M = [x²/0.115]M
= 4.3 x 10⁻⁷ => x = [H⁺(aq)]₁ = SqrRt(4.3 x 10⁻⁷ · 0.115)M = 2.32 x 10⁻⁴M in H⁺ ions.
In general, it is assumed that all of the hydronium ion comes from the 1st ionization step as adding 10⁻¹¹ to 10⁻⁷ would be an insignificant change in H⁺ ion concentration. Therefore, using 2.32 x 10⁻⁴M in H⁺ ion concentration, the hydroxide ion concentration is then calculated from
[H⁺][OH⁻] = Kw => [OH⁻] = (1 x 10⁻¹⁴/2.32 x 10⁻⁴)M = 4.3 x 10⁻¹¹M in OH⁻ ions.
________________________________________________________
NOTE: The 2.32 x 10⁻⁴M value for [H⁺] is reasonable for carbonic acid solution with pH ≅ 3.5 - 4.0.
First, we need to calculate moles of hydrazoic acid NH3:
moles NH3 = molarity * volume
= 0.15 m * 0.025 L
= 0.00375 moles
moles NaOH = molarity * volume
= 0.15 m * 0.015 L
= 0.00225 moles
after that we shoul get the total volume = 0.025L + 0.015L
= 0.04 L
So we can get the concentration of NH3 & NaOH by:
∴[NH3] = moles NH3 / total volume
= 0.00375 moles / 0.04 L
= 0.09375 M
∴[NaOH] = moles NaOH / total volume
= 0.00225 moles / 0.04 L
= 0.05625 M
then, when we have the value of Ka of NH3 so we can get the Pka value from:
Pka = -㏒Ka
= - ㏒ 1.9 x10^-5
= 4.7
finally, by using H-H equation we can get PH:
PH = Pka + ㏒[salt/ basic]
PH = 4.7 +㏒[0.05625/0.09375]
∴ PH = 4.48
Answer:
A) Age!! Its because even if the object was 1 year old or 100 years old, nothing about the impact would change. However, those other categories depict features that would definitely make an impact. For example as object that is big, fast, and hits at an angle perpendicular to whatever it is moving towards, the impact will be very lage. But if its the opposite and it was small and slow, then the impact crater would not be as large. Good luck on your quiz!!