Answer:

Explanation:
» The prediction is 98% correct because single displacement reaction type is highly possible.
This is because Fluorine has is more electronegative than Chlorine in Potassium Chloride. So, it strongly displaces Chlorine from the solution hence forming Chlorine gas.
» The 2% of wrong prediction maybe because of wrong reactant measurements following mole concept chemistry.
If you are asked the observation,
Observation » <u> </u><u>A</u><u> </u><u>green</u><u> </u><u>yellowish</u><u> </u><u>gas</u><u> </u><u>is</u><u> </u><u>formed</u><u>.</u>
This gas is Chlorine gas (Cl2)
<span>PV/T = P'V'/T'
660 x 1.00/295.2 = P' x 1.00/317.8
P'=710.5 torr</span>
Not sure good luck on finding someone too help you
Answer:
A) 8.00 mol NH₃
B) 137 g NH₃
C) 2.30 g H₂
D) 1.53 x 10²⁰ molecules NH₃
Explanation:
Let us consider the balanced equation:
N₂(g) + 3 H₂(g) ⇄ 2 NH₃(g)
Part A
3 moles of H₂ form 2 moles of NH₃. So, for 12.0 moles of H₂:

Part B:
1 mole of N₂ forms 2 moles of NH₃. And each mole of NH₃ has a mass of 17.0 g (molar mass). So, for 4.04 moles of N₂:

Part C:
According to the <em>balanced equation</em> 6.00 g of H₂ form 34.0 g of NH₃. So, for 13.02g of NH₃:

Part D:
6.00 g of H₂ form 2 moles of NH₃. An each mole of NH₃ has 6.02 x 10²³ molecules of NH₃ (Avogadro number). So, for 7.62×10⁻⁴ g of H₂:

This question includes four answer choices:
A. definite volume, highest molecular motion, highest kinetic energy
B. indefinite volume, least molecular motion, highest kinetic energy
C. definite volume, least molecular motion, lowest kinetic energy
D. definite volume, no molecular motion, lowest kinetic energy
Solids do not have the highest molecular motion (on the contrary they have the least molecular motion), so you can discard option A. Solids have a definite volume and the highest kinetic energy (given that they have the least molecular motion), so you discard option C. Molecules always have a vibrational motion, so you discard option D. Option C, have only characteristics that correctly describes a solid: definite volume, least molecular motion, lowest kinetic energy. Therefore, the answer is the option C.
<span /><span>
</span>