Answer:
Block A will have a final charge of 3.5nC.
Explanation:
This is because at the point of contact with Block B, which is electrically positive, the electrons in Block A will be attracted to the excess 'unpaired' protons in block B. Hence, the electrons will flow into Block B causing unpaired protons to remain in Block A.
This process is called Charging by Conduction.
This charging process will continue until the charges are evenly distributed between both objects.
In case you're wondering, "<em>how's all this possible within a few seconds</em>?", remember that electrons travel very fast and so, this process is a rather rapid one.
Answer:
2.5 kg.m/s
Explanation:
Taking left side as positive while right side direction as negative then
Momentum, p= mv where m is the mass of the object and v is the velocity of travel
Momentum for ball moving towards right side=mv=2.5*-3=-7.5 kg.m/s
Momentum for the ball moving towards the left side=mv=2.5*4=10 kg.m/s
Total momentum=-7.5 kg.m/s+10 kg.m/s=2.5 kg.m/s
Answer:
The astronomical model created and published by Nicholas Copernicus in the year 1543 is called Copernican heliocentrism. The model set the Sun in immobile position near the center of the solar system with Earth, as well as the other planets, spherical, epicycled and at consistent frequencies around it.
Answer:
a) 3.39 × 10²³ atoms
b) 6.04 × 10⁻²¹ J
c) 1349.35 m/s
Explanation:
Given:
Diameter of the balloon, d = 29.6 cm = 0.296 m
Temperature, T = 19.0° C = 19 + 273 = 292 K
Pressure, P = 1.00 atm = 1.013 × 10⁵ Pa
Volume of the balloon = 
or
Volume of the balloon = 
or
Volume of the balloon, V = 0.0135 m³
Now,
From the relation,
PV = nRT
where,
n is the number of moles
R is the ideal gas constant = 8.314 kg⋅m²/s²⋅K⋅mol
on substituting the respective values, we get
1.013 × 10⁵ × 0.0135 = n × 8.314 × 292
or
n = 0.563
1 mol = 6.022 × 10²³ atoms
Thus,
0.563 moles will have = 0.563 × 6.022 × 10²³ atoms = 3.39 × 10²³ atoms
b) Average kinetic energy = 
where,
Boltzmann constant,
Average kinetic energy = 
or
Average kinetic energy = 6.04 × 10⁻²¹ J
c) rms speed = 
where, m is the molar mass of the Helium = 0.004 Kg
or
rms speed = 
or
rms speed = 1349.35 m/s