1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lidiya [134]
3 years ago
5

The mechanical properties of a metal may be improved by incorporating fine particles of its oxide. Given that the moduli of elas

ticity of the metal and oxide are, respectively, 52 GPa and 380 GPa, what is the (a) upper-bound, and (b) lower-bound modulus of elasticity values (in GPa) for a composite that has a composition of 90 vol% of oxide particles.
Engineering
1 answer:
Goshia [24]3 years ago
7 0

Answer:

a) 347.2 GPa

b) 233.02 GPa

Explanation:

a) To find the upper bound modulus of elasticity, we use the formula:

E_c(u) = E_mV_m + E_pV_p

Where,

Volume fraction= V

E = modulus

Em=52GPa

Ep=380GPa

Vp=90%=0.90

Vm= 100%-90%=10%=0.10

We now have:

E_c(u) = (52*0.1)+(380*0.90)

= 5.2+342

= 347.2 GPa

b) For the lower bound modulus of elasticity, we use:

E_c(l) = \frac{E_mE_p}{E_pV_m+E_m+V_p}

=\frac{52*380}{(52*0.90)+(380*0.10)}

=233.02 GPa

You might be interested in
La probabilidad de que un nuevo producto tenga éxito es de 0.85. Si se eligen 10 personas al azar y se les pregunta si compraría
liq [111]

Answer:

La probabilidad pedida es 0.820196

Explanation:

Sabemos que la probabilidad de que un nuevo producto tenga éxito es de 0.85. Sabemos también que se eligen 10 personas al azar y se les pregunta si comprarían el nuevo producto. Para responder a la pregunta, primero definiremos la siguiente variable aleatoria :

X: '' Número de personas que adquirirán el nuevo producto de 10 personas a las que se les preguntó ''

Ahora bien, si suponemos que la probabilidad de que el nuevo producto tenga éxito se mantiene constante (p=0.85) y además suponemos que hay independencia entre cada una de las personas al azar a las que se les preguntó ⇒ Podemos modelar a X como una variable aleatoria Binomial. Esto se escribe :

X ~ Bi(n,p) en donde ''n'' es el número de personas entrevistadas y ''p'' es la probabilidad de éxito (una persona adquiriendo el producto) en cada caso.

Utilizando los datos ⇒ X ~ Bi(10,0.85)

La función de probabilidad de la variable aleatoria binomial es :

p_{X}(x)=P(X=x)=\left(\begin{array}{c}n&x\end{array}\right)p^{x}(1-p)^{n-x}    con x=0,1,2,...,n

Si reemplazamos los datos de la pregunta en la función de probabilidad obtenemos :

P(X=x)=\left(\begin{array}{c}10&x\end{array}\right)(0.85)^{x}(0.15)^{10-x} con x=0,1,2,...,10

Nos piden la probabilidad de que por lo menos 8 personas adquieran el nuevo producto, esto es :

P(X\geq 8)=P(X=8)+P(X=9)+P(X=10)

Calculando P(X=8), P(X=9) y P(X=10) por separado y sumando, obtenemos que P(X\geq 8)=0.820196

7 0
3 years ago
A gas metal arc welder is also known as a _____ welder.<br> A) TIGB) GTAWC) GMAWD) Resistance spot
nignag [31]

Answer:

GMAW

Explanation:

It's literally the initials of that type of welding

7 0
3 years ago
If you measure 0.7 V across a diode, the diode is probably made of
tatuchka [14]

Answer:

Made of Silicon.

Explanation:

A diode is a semiconductor device use in mostly electronic appliances. It is two terminals device consisting of a P-N junction formed either in Germanium or silicon crystal.

Diode can be forward biased or reverse biased.

When a diode is forward biased and the applied voltage is increased from zero, hardly any current flows through the device in the beginning.

It is so because the external voltage is being opposed by the internal barrier voltage whose value is 0.7v for silicon and 0.3v for germanium.

If you measure 0.7 V across a diode, the diode is probably therefore made of Silicon.

6 0
3 years ago
g For this project you are required to perform Matrix operations (Addition, Subtraction and Multiplication). For each of the ope
Kruka [31]

Answer:

C++ code is explained below

Explanation:

#include<iostream>

using namespace std;

//Function Declarations

void add();

void sub();

void mul();

//Main Code Displays Menu And Take User Input

int main()

{

  int choice;

  cout << "\nMenu";

  cout << "\nChoice 1:addition";

  cout << "\nChoice 2:subtraction";

  cout << "\nChoice 3:multiplication";

  cout << "\nChoice 0:exit";

 

  cout << "\n\nEnter your choice: ";

 

  cin >> choice;

 

  cout << "\n";

 

  switch(choice)

  {

      case 1: add();

              break;

             

      case 2: sub();

              break;

             

      case 3: mul();

              break;

     

      case 0: cout << "Exited";

              exit(1);

     

      default: cout << "Invalid";      

  }

  main();  

}

//Addition Of Matrix

void add()

{

  int rows1,cols1,i,j,rows2,cols2;

 

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  //Taking First Matrix

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

  //Printing 1st Matrix

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

  //Taking Second Matrix

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

  //Displaying second Matrix

  cout << "\n";

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m2[i][j] << " ";

      cout << "\n";

  }

  //Displaying Sum of m1 & m2

  if(rows1 == rows2 && cols1 == cols2)

  {

      cout << "\n";

      for(i=0;i<rows1;i++)

      {

          for(j=0;j<cols1;j++)

              cout << m1[i][j]+m2[i][j] << " ";

          cout << "\n";  

      }

  }

  else

      cout << "operation is not supported";

     

  main();

 

}

void sub()

{

  int rows1,cols1,i,j,k,rows2,cols2;

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

 

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

 

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

 

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

  cout << "\n";

  //Displaying Subtraction of m1 & m2

  if(rows1 == rows2 && cols1 == cols2)

  {

      for(i=0;i<rows1;i++)

      {

          for(j=0;j<cols1;j++)

              cout << m1[i][j]-m2[i][j] << " ";

          cout << "\n";  

      }

  }

  else

      cout << "operation is not supported";

     

  main();

 

}

void mul()

{

  int rows1,cols1,i,j,k,rows2,cols2,mul[10][10];

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

  cout << "\n";

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

 

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

  cout << "\n";

  //Displaying Matrix 2

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m2[i][j] << " ";

      cout << "\n";

  }

     

  if(cols1!=rows2)

      cout << "operation is not supported";

  else

  {

      //Initializing results as 0

      for(i = 0; i < rows1; ++i)

  for(j = 0; j < cols2; ++j)

  mul[i][j]=0;

// Multiplying matrix m1 and m2 and storing in array mul.

  for(i = 0; i < rows1; i++)

  for(j = 0; j < cols2; j++)

  for(k = 0; k < cols1; k++)

  mul[i][j] += m1[i][k] * m2[k][j];

// Displaying the result.

  cout << "\n";

  for(i = 0; i < rows1; ++i)

      for(j = 0; j < cols2; ++j)

      {

      cout << " " << mul[i][j];

      if(j == cols2-1)

      cout << endl;

      }

      }  

  main();

 }

5 0
3 years ago
Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60 m3/s at 0.8 bar, 280 K. The compres
natima [27]

Answer:

a) The Net power developed in this air-standard Brayton cycle is 43.8MW

b) The rate of heat addition in the combustor is 84.2MW

c) The thermal efficiency of the cycle is 52%

Explanation:

To solve this cycle we need to determinate the enthalpy of each work point of it. If we consider the cycle starts in 1, the air is compressed until 2, is heated until 3 and go throw the turbine until 4.

Considering this:

h_{i} =T_{i}C_{pair}=T_{i}1.005\frac{KJ}{Kg K}

\mu_{comp}=\frac{h_{2S}-h_{1}}{h_{2}-h_{1}}

\mu_{comp}=\frac{h_{3}-h_{4}}{h_{3}-h_{4S}}

G_{m} =\frac{PMG_{v}}{TR} =59.73\frac{Kg}{s}

Now we can calculate the enthalpy of each work point:

h₁=281.4KJ/Kg

h₂=695.41KJ/Kg

h₃=2105KJ/Kg

h₄=957.14KJ/Kg

The net power developed:

P_{net}=P_{Tur}-P_{Comp}=G_{m}((h_{3}-h_{4})-(h_{2}-h_{1}))

The rate of heat:

Q=G_{m}(h_{3}-h_{2})

The thermal efficiency:

\mu_{ther}=\frac{P_{net}}{Q}

3 0
3 years ago
Other questions:
  • Practicing new things strains your brain fibers, weakening your ability to make connections.
    13·1 answer
  • A 55-μF capacitor has energy ω (t) = 10 cos2 377t J and consider a positive v(t). Determine the current through the capacitor.
    12·1 answer
  • Kirchoff's Law states that, by the time current has returned to its source, all
    13·2 answers
  • You are an engineer working in a auto crash test lab. Some members of your team have raised objections against the use of cadave
    10·1 answer
  • A student proposes a complex design for a steam power plant with a high efficiency. The power plant has several turbines, pumps,
    6·1 answer
  • The information on a can of pop indicates that the can contains 360 mL. The mass of a full can of pop is 0.369 kg, while an empt
    14·1 answer
  • What is one major life lesson you learned from the movie; ¨Spare Parts¨
    6·2 answers
  • For a nozzle-duct system shown in Fig Q3, the nozzle is designed to produce a Mach number of 2.8 with y = 1.4, The inlet conditi
    14·1 answer
  • Problem 2
    11·1 answer
  • What is the objective of phasing out an INDUCTION MOTOR before putting the machine into commission?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!