Answer:
b) Nothing will happen, the sea saw will still be balanced.
Explanation:
b) Nothing will happen, the sea saw will still be balanced.
Reason:-
When two kids are balanced, the sum of torques on the seesaw will be zero.
if each kid, reduces their distances by half, then the torque of each kid will be half and the sum of torque of each on the seesaw will be zero.
Therefore the seesaw is balanced
Answer:

Option A is correct
Explanation:
Let's check the options:
A: The electron has a negative charge and is found outside of the nucleus.
Yeah! It's TRUE . An electron is a <u>negatively</u><u> </u><u>charged</u><u> </u><u>particle</u><u> </u><u>and</u><u> </u><u>is</u><u> </u><u>located</u><u> </u><u>outside</u><u> </u><u>the</u><u> </u><u>nucleus</u><u> </u><u>of</u><u> </u><u>an</u><u> </u><u>atom.</u>
B : The neutron has a negative charge and is found in the nucleus.
No! It's FALSE . A neutron carries <u>no </u><u>charge</u>. i.e it is a neutral particle and found inside the nucleus.
C : The proton has no charge and is found in the nucleus.
No! It's FALSE.A proton is a <u>positively</u><u> </u><u>charged</u><u> </u><u>particle</u> present inside nucleus of an atom.
D : The neutron has no charge and is found outside of the nucleus.
I agree that the neutron has no charge. But it is found <u>inside</u> the nucleus not outside . So, this statement is FALSE .
Hence, we found our answer! :D
A. The electron has a negative charge and is found outside of the nucleus is the correct statement about an atom.
Hope I helped!
Best regards! :D
~
Answer:
a. Ssystem > 40 J/K
Explanation:
Given that
The entropy of first block = 10 J/K
The entropy of second block = 30 J/K
When two bodies come into contact with each other, the entropy of the combined system will increase and the entropy sum remains unchanged: According to the Second law of thermodynamics.The entropy of the system will be greater than 40 J/K.
Therefore the answer is a.
Ssystem > 40 J/K
Where are the pictures or options?
C.
The range of temperatures on Earth allows water to exist in all of its states.