Answer:
Condition of fatigue caused by depletion of glycogen
Explanation:
Let us examine how a body produces energy. There are two ways:
Fat metabolism
Fatty acids in the body help to capture adenosine triphosphate (ATP) which produces energy. On a per gram basis fatty acids yields the most ATP when oxidized completely.
Glycogen breakdown
the enzyme glycogen phosphorylase cleaves glycogen from the non reducing ends to produce monomers of glucose-1-phosphate. These monomers are used by the human body to supply energy.
When a person is exercising his/her VO₂ i.e., the oxygen consumption reaches maximum, here most of the energy comes from glycogen. While exercising most of the energy comes from glycogen breakdown.
So, when Anthony hit the wall it means that he has depleted his source of glycogen and can no longer produce glucose which provides him energy.
The question is incomplete. The complete question is :
To measure the effective coefficient of friction in a bone joint, a healthy joint (and its immediate surroundings) can be removed from a fresh cadaver. The joint is inverted, and a weight is used to apply a downward force F⃗ d on the head of the femur into the hip socket. Then, a horizontal force F⃗ h is applied and increased in magnitude until the femur head rotates clockwise in the socket. The joint is mounted in such a way that F⃗ h will cause clockwise rotation, not straight-line motion to the right. The friction force will point in a direction to oppose this rotation.
Draw vectors indicating the normal force n⃗ (magnitude and direction) and the frictional force f⃗ f (direction only) acting on the femur head at point A.
Assume that the weight of the femur is negligible compared to the applied downward force.
Draw the vectors starting at the black dot. The location, orientation and relative length of the vectors will be graded
Solution :
The normal force represented by N is equal to the downward force,
which is equal in magnitude but it is opposite in direction.
Also the frictional force acts always to oppose the motion because the bone starts moving in a clockwise direction. The frictional force that will be applied to the right direction so that the movement or the rotation at A is opposed.
Answer:
Pressure = 9.94 x 10⁶ Pascals
Explanation:
given data
mass = 51 kg
radius = 0.400 cm
solution
we know Pressure that is express as here
Pressure = total force on an area ÷ the area of the area .................1
and
Force is the woman's weight so weight will be
Weight = mass × gravity .................2
put here value
Weight = 51 × 9.8 m/s²
Weight = 499.8 Newtons
and
Area of a circle of bottom of the heel = (π) × (radius)² ...................3
put here value
Area = (π) × (0.40 cm)²
Area = 0.502654 cm²
Area = 0.0000502654 m²
and
now we put value in equation 1 we get
Pressure = force ÷ area
Pressure = 499.8 ÷ 0.0000502654
Pressure = 9943221.381 N/m²
Pressure = 9.94 x 10⁶ Pascals
Answer:
6666.67 Newtons
Explanation:
The formula F=ma (force is equal to mass multiplied by acceleration) can be used to calculate the answer to this question.
In this case:
- mass= 0.1mg= 1*10^-7 kg
- velocity= 4.00*10^3 m/s
- time= 6.00*10^-8 s
Using velocity and time, acceleration can be calculated as:
Substituting these values into the formula F=ma, the answer is:
- F= (1*10^-7)kg * (6.667*10^10) m/s²
- F= 6666.67 Newtons of force
Answer:
P = 7196 [kPa]
Explanation:
We can solve this problem using the expression that defines the pressure depending on the height of water column.
P = dens*g*h
where:
dens = 1028 [kg/m^3]
g = 10 [m/s^2]
h = 700 [m]
Therefore:
P = 1028*10*700
P = 7196000 [Pa]
P = 7196 [kPa]