Answer:
1.5 moles
Explanation:
The equation of the reaction is given as:
2 MnO2 + 4 KOH + O2 --> 2KMnO 4 + 2KOH + H2
From the equation,
2 moles of MnO2 produces 2 moles of KMnO4
x moles of MnO2 would produce 1.5 moles of KMnO4
2 = 2
x = 1.5
Solving for x;
x = 1.5 * 2 / 2
x = 1.5 moles
<span>12.4 g
First, calculate the molar masses by looking up the atomic weights of all involved elements.
Atomic weight manganese = 54.938044
Atomic weight oxygen = 15.999
Atomic weight aluminium = 26.981539
Molar mass MnO2 = 54.938044 + 2 * 15.999 = 86.936044 g/mol
Now determine the number of moles of MnO2 we have
30.0 g / 86.936044 g/mol = 0.345081265 mol
Looking at the balanced equation
3MnO2+4Al→3Mn+2Al2O3
it's obvious that for every 3 moles of MnO2, it takes 4 moles of Al. So
0.345081265 mol / 3 * 4 = 0.460108353 mol
So we need 0.460108353 moles of Al to perform the reaction. Now multiply by the atomic weight of aluminum.
0.460108353 mol * 26.981539 g/mol = 12.41443146 g
Finally, round to 3 significant figures, giving 12.4 g</span>
B) False- It has seven
A hexagon would have 6.
Answer:
D is correct
Explanation:
because
we know that
density of lead is 11.36 g/cm3
and
density of tin is 7.31 g/cm3
so..
density of alloy by mixing 50/50
=(11.36+7.31)/2 g/cm3
=18.67/2 g/cm3
=9.33 g/cm3