Answer:
24erfvtgvcd2s
Explanation:
2d343f5vrc3344drews3wqqeq
Reading a book in your warm, comfy seat ... in Row-27 of a
passenger airliner cruising at 450 miles per hour.
Answer:
0.25 m.
Explanation:
We'll begin by calculating the spring constant of the spring.
From the diagram, we shall used any of the weight with the corresponding extention to determine the spring constant. This is illustrated below:
Force (F) = 0.1 N
Extention (e) = 0.125 m
Spring constant (K) =?
F = Ke
0.1 = K x 0.125
Divide both side by 0.125
K = 0.1/0.125
K = 0.8 N/m
Therefore, the force constant, K of spring is 0.8 N/m
Now, we can obtain the number in gap 1 in the diagram above as follow:
Force (F) = 0.2 N
Spring constant (K) = 0.8 N/m
Extention (e) =..?
F = Ke
0.2 = 0.8 x e
Divide both side by 0.8
e = 0.2/0.8
e = 0.25 m
Therefore, the number that will complete gap 1is 0.25 m.
Answer:
pumpkin
Explanation:
watermelon and pumpkins are close to shape and size
Taking into account the definition of molarity, the concentration of a solution that contains 70 g of H₂SO₄ in 0,28 dm³ of solution is 2.5510
.
<h3>Definition of molarity</h3>
Molar concentration or molarity is a measure of the concentration of a solute in a solution and indicates the number of moles of solute that are dissolved in a given volume.
The molarity of a solution is calculated by dividing the moles of solute by the volume of the solution:

Molarity is expressed in units
.
<h3>This case</h3>
In this case, you have:
- number of moles= 70 g×
= 0.7143 moles, where 98 g/mole os the molar mass of H₂SO₄ - volume= 0.28 dm³= 0.28 L (being 1 dm³= 1 L)
Replacing in the definition of molarity:

Solving:
<u><em>Molarity= 2.5510 </em></u>
Finally, the concentration of a solution that contains 70 g of H₂SO₄ in 0,28 dm³ of solution is 2.5510
.
Learn more about molarity:
brainly.com/question/9324116
brainly.com/question/10608366
brainly.com/question/7429224
#SPJ1