Mass of yellow train, my = 100 kg
Initial Velocity of yellow train, = 8 m/s
mass of orange train = 200 kg
Initial Velocity of orange train = -1 m/s (since it moves opposite direction to the yellow train, we will put negative to show the opposite direction)
To calculate the initial momentum of both trains, we will use the principle of conservation of momentum which
The sum of initial momentum = the sum of final momentum
Since the question only wants the sum of initial momentum,
(100)(8) + (200)(-1) = 600 m/s
Answer:
An increase in angular speed due to conservation of energy priciple.
Explanation:
This leads to a decrease in your moment of inertia. This means that your angular velocity must increase as a result of conservation of energy principle and therefore you will spin faster.
It's also the same way this conservation of energy principle applies to ice skaters that makes them spin faster when they suddenly draw their arms inwards.
Use F=ma formula
F=m v/t. a=v/t
put values u will get answer.
answer should be around 30N .
Answer:
Answered
Explanation:
According to the impact theory, a glancing collision between a Mars-sized object and Earth led to the formation of the Moon. The iron core of Earth had formed before this collision, leading to the similarity between the composition of the Moon and Earth's mantle. After the collision, any iron core of the Mars-sized object would have been left behind on Earth and eventually merged with Earth's core. The Moon then formed out of the debris thrown into space by the collision.
Rutherford was the first person to make a model of an atom that was mostly accurate, the only thing is in his early model there were electrons and protons, at this time Rutherford did not know of a neutron and was not discovered until 1932.<span />