With the addition of vectors we can find that the correct answer is:
C) Q> P > R = S > T
The addition of vectors must be done taking into account that they have modulus and direction. The analytical method is one of the easiest methods, the method to do it is:
- Set a Cartesian coordinate system
- Decompose vectors into their components in a Cartesian system
- Perform the algebraic sums on each axis
- Find the resultant vector using the Pythagoras' Theorem to find the modulus and trigonometry to find the direction.
In this exercise indicate that the modulus of all vectors is the same, suppose that the value of the modulus is A.
We fix a Cartesian coordinate system with the horizontal x axis and the vertical y axis, we can see that we do not need to perform any decomposition, so we perform the algebraic sums
Diagram P
x-axis
x = 2A
y-axis
y = 2A
The modulus of the resulting vector can be found with the Pythagorean Theorem
P =
P =
P = 2 √2 A
Diagram Q
x-axis
x = 3A
y-axis
y = A
Resulting
Q =
Q =
Q = 
Diagram R
x- axis
x = 0
y-axis
y = 2 A
Resulting
R =
R =
Diagram S
x-axis
x = 2 A
y-axis
y = 0
Resulting
S = 2A
Diagram T
x- axis
x = 0
y-axis
y = 0
Resultant T = 0
We order the diagram from highest to lowest
Q> P> R = S> T
When reviewing the different answers, the correct one is:
C. Q> P> R = S> T
Learn more about adding vectors here:
brainly.com/question/14748235
Neap tide is when sun and moon are aligned at 90 degrees
spring tide is when sun and moon are in line 180 degrees.
Answer:
12 units
Explanation:
This problem can be solved if we take into account the equation for a sphere

where we took that the radius is 13 units. If we take z=5 and we replace this value in the equation of the sphere we have

where we have taken x2 +y2 because if the equation of a circunference.
In this case the intersection is made when we take z=5, for this value the sphere and the plane coincides in values.
Hence, the radius is 12 units
I hope this is useful for you
regards
To find the ratio of planetary speeds Va/Vb we need the orbital velocity formula:
V=√({G*M}/R), where G is the gravitational constant, M is the mass of the distant star and R is the distance of the planet from the star it is orbiting.
So Va/Vb=[√( {G*M}/Ra) ] / [√( {G*M}/Rb) ], in our case Ra = 7.8*Rb
Va/Vb=[ √( {G*M}/{7.8*Rb} ) ] / [√( {G*M}/Rb )], we put everything under one square root by the rule: (√a) / (√b) = √(a/b)
Va/Vb=√ [ { (G*M)/(7.8*Rb) } / { (G*M)/(Rb) } ], when we cancel out G, M and Rb we get:
Va/Vb=√(1/7.8)/(1/1)=√(1/7.8)=0.358 so the ratio of Va/Vb = 0.358.