Answer:
The specific question is not stated, however the general idea is given in the attached picture. The electric field in each region can be found by Gauss’ Law.
at r < R:
Since the solid sphere is conducting, the total charge Q is distributed over the surface, and the electric field inside the sphere is zero.
E = 0.
at R < r < 2R:
The electric field can be found by Gauss’ Law as in the attachment. The green pencil shows this exact region.
at 2R < r:
The electric field can again be found by Gauss’ Law, the blue pencil shows the calculations for this region.
Explanation:
Gauss’ Law is straightforward when applied to spheres. The area of the sphere is
, and the enclosed charge is given in the question as Q for the inner sphere, and 2Q for the whole system.
Well, think about how the tides will be affected when the moon moves farther away. If the moon first started off very close the earth, we would have more tsunamis. (Scientists have found that the moon has possibly been closer to earth long ago.) While it moves away, soon there will no longer be many tides.
Answer:
q₁ = -2.92 nC
Explanation:
Given;
first point charge, q₁ = ?
second point charge, q₂ = 10 nC
net flux through the surface of the sphere, Φ = 800 N.m²/C
According to Gauss’s law, the flux through any closed surface (Gaussian surface), is equal to the net charge enclosed divided by the permittivity of free space.

where;
Φ is net flux
net charge enclosed
ε₀ is permittivity of free space.
= Φε₀
= 800 x 8.85 x 10⁻¹²
= 7.08 x 10⁻⁹ C
= 7.08 nC
q₁ + q₂ = 
q₁ =
- q₂
q₁ = 7.08nC - 10 nC
q₁ = -2.92 nC
Answer:
Which item fits in the left side of the table?Criminal versus Civil Cases Criminal cases Civil cases ? . • Accuser is called the plaintiff • Lower burden of proof Defendant may be found liable • Usually heard by a judge only • Accused not guaranteed an attorney
A. No burden of proof
B. Accuser is called the defendant
C. Defendant may be found guilty
D. Usually heard by a jury only