An Olympic high diver has gravitational potential energy because of her height. As she dives, kinetic energy becomes of her energy just before she hits the water.
Gravitational potential energy is the energy possessed or acquired by an object due to a change in its position when it is present in a gravitational field. In simple terms, it can be said that gravitational potential energy is an energy that is related to gravitational force or to gravity.
Kinetic energy is the energy of motion, observable as the movement of an object, particle, or set of particles.
When the high diver is standing stable and not moving , that diver has a gravitational potential energy because of the height . The moment she dives , before hitting the water , from being stationary she gained some momentum and come in motion , due to motion her gravitational potential energy will change to kinetic energy before hitting the ground.
To learn more about Gravitational potential energy here
brainly.com/question/15978356
#SPJ4
IF the toss was straight upward, then the kinetic energy it got
from the toss is the gravitational potential energy it has at the top,
where it stops rising and starts falling.
Potential energy = (mass) x (gravity) x (height)
= (0.15 kg) x (9.8 m/s²) x (20 m)
= 29.4 kg-m²/s² = 29.4 joules .
Answer:
Naturally occurring radio waves are made by lightning or by astronomical objects. Artificially generated radio waves are used for fixed and mobile radio communication, broadcasting, radar and other navigation systems, communications satellites, computer networks and innumerable other applications.
Explanation:
Answer:
the magnitude of the torque on the permanent magnet = 7.34×10⁻³ Nm
the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils = -1.0485 ×10⁻² J
Explanation:
The torque is given by :
where ;
m = 0.160 A.m²
B = 0.0800 T
θ = 35°
So the magnitude of the torque N = mBsinθ
N = (0.160)(0.0800)(sin 35°)
N = 0.007341
N = 7.34×10⁻³ Nm
Hence, the magnitude of the torque on the permanent magnet = 7.34×10⁻³ Nm
b) The potential energy
U = -mBcosθ
U = (- 0.160)(0.0800)(cos 45)
U = -0.010485
U = -1.0485 ×10⁻² J
Thus, the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils = -1.0485 ×10⁻² J
Answer:
ELASTIC collision
kinetic energy is conservate
Explanation:
As the ball bounces to the same height, it can be stated that the impact with the floor is ELASTIC.
As the floor does not move the conservation of the moment
po = pf
-mv1 = m v2
- v1 = v2
So the speed with which it descends is equal to the speed with which it rises
Therefore the kinetic energy of the ball before and after the collision is the same