Answer:
b
Explanation:
I think im not really sure tho
The answer is:
Both the distance traveled in a given time and the magnitude of the acceleration at a given instant
Hope I Helped!
Answer:
8.8 kN
Explanation:
V = 2 m³, W = 40 kN, SG = 1.59
Bouyant force N = 1.59 * 1000 kg/m³ * 9.81 N/kg * 2 m³ = 31.2 kN
So the weight becomes 40 - 31.2 = 8.8 kN
Answer: 40.84 m
Explanation:
Given
Radius of the disk, r = 2m
Velocity of the disk, v = 7 rad/s
Acceleration of the disk, α = 0.3 rad/s²
Here, we use the formula for kinematics of rotational motion to solve
2α(θ - θ•) = ω² - ω•²
Where,
ω• = 0
ω = v/r = 7/2
ω = 3.5 rad/s
2 * 0.3(θ - θ•) = 3.5² - 0
0.6(θ - θ•) = 12.25
(θ - θ•) = 12.25 / 0.6
(θ - θ•) = 20.42 rad
Since we have both the angle and it's radius, we can calculate the arc length
s = rθ = 2 * 20.42
s = 40.84 m
Thus, the needed distance is 40.84 m
Answer:
D. −F
Explanation:
the rest of the answers are
2/3F
The force is represented as a positive quantity and is repulsive.
Electrostatic force is inversely proportional to the square of the distance.
The direction of the force changes, and the magnitude of the force quadruples.
hope this helps sorry if i was too late! :)