Answer:
See explanation
Explanation:
The degradation of the drug is a first order process;
Hence;
ln[A] = ln[A]o - kt
Where;
ln[A] = final concentration of the drug
ln[A]o= initial concentration of the drug = 5 gm/100
k= degradation constant = 0.05 day-1
t= time taken
When [A] =[ A]o - 0.5[A]o = 0.5[A]o
ln2.5 = ln5 - 0.05t
ln2.5- ln5 = - 0.05t
t= ln2.5- ln5/-0.05
t= 0.9162 - 1.6094/-0.05
t= 14 days
b) when [A] = [A]o - 0.9[A]o = 0.1[A]o
ln0.5 = ln5 -0.05t
t= ln0.5 - ln5/0.05
t= -0.693 - 1.6094/-0.05
t= 46 days
Answer:

Explanation:
From the question we are told that:
Mass 
Drop distance 
Generally the equation for Spring Constant is mathematically given by



Answer:
the work converted to thermal energy is 40 J.
Explanation:
Given;
work done by the physicist,w = 100 J
height through which the book is raised, h = 0.2 m
efficiency of machine = 60% = 0.6
The useful work done by the machine is calculated as;
useful work = 0.6 x 100 = 60 J
The wasted energy = 100 J - 60 J
The wasted energy = 40 J
The wasted energy by the machine is possibly converted to thermal energy by the frictional part of the machine.
Therefore, the work converted to thermal energy is 40 J.
Find the amount of work that the spring does. This can be found using the equation 1/2kx^2. Then, you must set that equal to the amount of kinetic energy the car has. This is possible thanks to the work-energy theorem.
1/2kx^2 = 1/2mv^2
Solve to find velocity. Remember, the spring is displaced .15 m, not 15!
To find the acceleration, use F = ma. The force being applied to the car is kx, and you know the mass. You do the math.
For problem C I don't know, haven't done that yet in my class. Sorry!