Answer:
0.46875g/ml
Explanation:
Density(p) = m / v unit - g/ml or Kg/m^3
Given
mass = 2.4g
volume = 5.12ml
p = m / v
= 2.4g / 5.12ml
= 0.46875g/ml
Answer:
Simply put, you can go from moles to grams and vice versa by using the mass of 1 mole of that substance, i.e its molar mass. For example, the molar mass of carbon is 12.011 g/mol. This means that 1 mole of carbon, or 6.022⋅1023 atoms of carbon, weigh 12.011 g.
Explanation:
Once the torch is lit, the acetylene flow must be increased until the flame stops smoking <span>before the oxygen is turned on for adjustment in order to keep the tip of the torch cool.
You should also note that while lighting the torch, you should keep the spark lighter near the tip but not covering it.</span>
Answer:
The predominant intermolecular force in the liquid state of each of these compounds:
ammonia (NH3)
methane (CH4)
and nitrogen trifluoride (NF3)
Explanation:
The types of intermolecular forces:
1.Hydrogen bonding: It is a weak electrostatic force of attraction that exists between the hydrogen atom and a highly electronegative atom like N,O,F.
2.Dipole-dipole interactions: They exist between the oppositely charged dipoles in a polar covalent molecule.
3. London dispersion forces exist between all the atoms and molecules.
NH3 ammonia consists of intermolecular H-bonding.
Methane has London dispersion forces.
Because both carbon and hydrogen has almost similar electronegativity values.
NF3 has dipole-dipole interactions due to the electronegativity variations between nitrogen and fluorine.
Answer:
Ca
2+
<K + <Ar<Cl − <S 2−
Explanation:
Ar,K +
,Cl −
,S 2−
,Ca 2+
have the same number of electrons. Their radii would be different because of their different nuclear charges. The cation with the greater positive charge will have a smaller radius because of the greater attraction of the electrons to the nucleus. Anion with the greater negative charge will have the larger radius. In this case, the net repulsion of the electrons will outweigh the nuclear charge and the ion will expand in size. Hence the correct order will be Ca
2+ <K + <Ar<Cl − <S 2−