The mass of water in the tank, given the data from the question is 549594 g
<h3> Description of mole </h3>
The mole of a substance is related to it's mass and molar mass according to the following equation:
Mole = mass / molar mass
<h3>How to determine the mass of water in the tank</h3>
From the question given above, the following data were obtained:
- Mole of water = 30533 moles
- Molar mass of water = 18 g/mol
- Mass of water = ?
The mass of the water can be obtained as follow:
Mass = mole × molar mass
Mass of water = 30533 × 18
Mass of water = 549594 g
Learn more about mole:
brainly.com/question/13314627
#SPJ1
With the principle quantum number being 2, the maximum number that can share this is 8. You can use the general formula 2n^2 to calculate this number (n=quantum level), or you can use the concept of quantum numbers (n, l, m, s) to justify this answer.
Water has the special type of attraction called Hydrogen bonding. The bonds between the Hydrogen and the Oxygen in each water molecule make a super dipole because the Oxygen atom is way more electronegative than the hydrogen atom. These OH bonds can then be attracted to other H2O molecules. If you have ever poured water up to the brim and there is little bit of water that is poking above the top, hydrogen bonding keeps those water molecules from spilling
Solar, or <span>radiant to chemical.</span>
Answer:
C. H2O diffuses in.
Explanation:
<em>The phospholipids-made synthetic vesicle in this case will act like a semi-permeable membrane while the solution in the interior lumen will be hypertonic to the surrounding pure water. </em>
<em>Hence, water molecules will diffuse into the lumen through the semi-permeable membrane because of the osmotic gradient that exist between the internal and the surrounding solution of the vesicle.</em>