Answer:
The angular displacement is not a length (not measured in meters or feet), so an angular displacement is different than a linear displacement. ... As the object rotates through the angular displacement phi, the point on the edge of the disk moves distance sa along a circular path.
Answer:
Explanation:
We shall apply Gauss's theorem for electric flux to solve the problem . According to this theorem , total electric flux coming out of a charge q can be given by the following relation .
∫ E ds = q / ε
Here q is assumed to be enclosed in a closed surface , E is electric intensity on the surface so
∫ E ds represents total electric flux passing through the closed surface due to charge q enclosed in the surface .
This also represents total flux coming out of the charge q on all sides .
This is equal to q / ε where ε is a constant called permittivity which depends upon the medium enclosing the charge . For air , its value is 8.85 x 10⁻¹² .
If charge remains the same but radius of the sphere enclosing the charge is doubled , the flux coming out of charge will remain the same .
It is so because flux coming out of charge q is q / ε . It does not depend upon surface area enclosing the charge . It depends upon two factors
1 ) charge q and
2 ) the permittivity of medium ε around .
Hi there!
We can use the following (derived) equation to solve for the final velocity given height:
vf = √2gh
We can rearrange to solve for height:
vf² = 2gh
vf²/2g = h
Plug in the given values (g = 9.81 m/s²)
(13)²/2(9.81) = 8.614 m
We can calculate time using the equation:
vf = vi + at, where:
vi = initial velocity (since dropped from rest, = 0 m/s)
a = acceleration (in this instance, due to gravity)
Plug in values:
13 = at
13/a = t
13/9.81 = 1.325 sec
Answer:

Explanation:
If the object is rolling without slipping, every unit of rotated angle equals to a distance perimeter rotated.
Suppose the object complete 1 revolution within time t. The angular distance is 2π rad. Its angular velocity is 2π/t
The distance it covered is its circumference, which is 2πr, and so the speed is 2πr/t
So the linear speed compared to angular speed is


(GABS) Overnight, all of the particles settled down to the bottom , and the larger particles were on the bottom and the smaller particles were on the top. Therefore, clay was on top, hummus was in the middle, and soil was on the bottom.
Particles dissolve is an unique way