Answer:
I'm pretty sure its B and C
Explanation:
B bc the weight is gravitational pull x mass so when the object has same mass the weight is smaller on moon
C bc mass is the same - you can't change it
At the top of the height, the velocity is zero and acceleration is negative of acceleration due to gravity ( i.e
).
The time of the ball in air is 3.2 s, so ascending time is
.
Therefore from kinematic equation,

Substituting the values we get,
, Here v = 0 at top.
Now from equation,
, here h is the height .
So,
.
Thus, the ball reached at its maximum height of 12.48 m.
I think its b if not then I'm sorry buddy:(
Answer:
2/3V
Explanation:
Given that a ball of mass M and speed V collides with another ball of mass 2M and velocity v/2 . After collision they stick together and we need to find their speed after collision . According to Law of Conservation of Momentum , <em>T</em><em>h</em><em>e</em><em> </em><em>t</em><em>o</em><em>t</em><em>a</em><em>l</em><em> </em><em>m</em><em>o</em><em>m</em><em>e</em><em>n</em><em>t</em><em>u</em><em>m</em><em> </em><em>o</em><em>f</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>s</em><em>y</em><em>s</em><em>t</em><em>e</em><em>m</em><em> </em><em>b</em><em>e</em><em>f</em><em>o</em><em>r</em><em>e</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>a</em><em>f</em><em>t</em><em>e</em><em>r</em><em> </em><em>c</em><em>o</em><em>l</em><em>l</em><em>i</em><em>s</em><em>i</em><em>o</em><em>n</em><em> </em><em>i</em><em>s</em><em> </em><em>c</em><em>o</em><em>n</em><em>s</em><em>t</em><em>a</em><em>n</em><em>t</em><em> </em><em>.</em><em>T</em><em>h</em><em>a</em><em>t</em><em> </em><em>i</em><em>s</em><em> </em><em>;</em>
<u>H</u><u>e</u><u>n</u><u>c</u><u>e</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>v</u><u>e</u><u>l</u><u>o</u><u>c</u><u>i</u><u>t</u><u>y</u><u> </u><u>a</u><u>f</u><u>t</u><u>e</u><u>r</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>c</u><u>o</u><u>l</u><u>l</u><u>i</u><u>s</u><u>i</u><u>o</u><u>n</u><u> </u><u>i</u><u>a</u><u> </u><u>2</u><u>/</u><u>3</u><u>V</u><u> </u><u>.</u>
Answer:
The net charge within the cylinder is (-44.25 pC)
Explanation:
Given that,
Total electric flux, 
Length of the cylinder, l = 1.2 m
Diameter of the cylinder, d = 0.2 m
We know that the Gauss's law of electrostatics gives the relation between electric flux and the net charge. It is given by :

q is net charge within the cylinder

So, the net charge within the cylinder is (-44.25 pC). Hence, this is the required solution.