Answer:
The products must contain the same numbers and types of atoms
Answer: Add an incline or grade to the road track.
Explanation:
Refer to the figure shown below.
When a vehicle travels on a level road in a circular path of radius r, a centrifugal force, F, tends to make the vehicle skid away from the center of the circular path.
The magnitude of the force is
F = mv²/r
where
m = mass of the vehicle
v = linear (tangential) velocity to the circular path.
The force that resists the skidding of the vehicle is provided by tractional frictional force at the tires, of magnitude
μN = μW = μmg
where
μ = dynamic coefficient of friction.
At high speeds, the frictional force will not overcome the centrifugal force, and the vehicle will skid.
When an incline of θ degrees is added to the road track, the frictional force is augmented by the component of the weight of the vehicle along the incline.
Therefore the force that opposes the centrifugal force becomes
μN + Wsinθ = W(sinθ + μ cosθ).
Good Morning, how are you?
Your answer is C. The moon orbits and rotates the same, so we NEVER see the far side of the moon from earth :)
Have a great day :)
Frost will disturb the smooth flow of air over the wing, unpleasantly
distressing its lifting competence. In other words, this spoils the even flow
of air over the wings, by this means decreasing lifting capability. Also, frost
may avoid the airplane from becoming flying at normal departure speed.
To verify the identity, we can make use of the basic trigonometric identities:
cot θ = cos θ / sin θ
sec θ = 1 / cos <span>θ
csc </span>θ = 1 / sin θ<span>
Using these identities:
</span>cot θ ∙ sec θ = (cos θ / sin θ ) (<span> 1 / cos </span><span>θ)
</span>
We can cancel out cos <span>θ, leaving us with
</span>cot θ ∙ sec θ = 1 / sin θ
cot θ ∙ sec θ = = csc <span>θ</span>