1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spayn [35]
2 years ago
13

#5 Air undergoes an adiabatic compression in a piston-cylinder assembly from P1= 1 atm and Ti=70 oF to P2= 5 atm. Employing idea

l gas model with constant specific heat capacity ratio (Y), determine the work and heat transfer per unit mass if y = 1.5. (15 points)​
Engineering
1 answer:
otez555 [7]2 years ago
8 0

Answer:

The work transfer per unit mass is approximately 149.89 kJ

The heat transfer for an adiabatic process = 0

Explanation:

The given information are;

P₁ = 1 atm

T₁ = 70°F = 294.2611 F

P₂ = 5 atm

γ = 1.5

Therefore, we have for adiabatic system under compression

T_{2} = T_{1}\cdot \left (\dfrac{P_{2}}{P_{1}}  \right )^{\dfrac{\gamma -1}{\gamma }}

Therefore, we have;

T_{2} = 294.2611 \times \left (\dfrac{5}{1}  \right )^{\dfrac{1.5 -1}{1.5 }} \approx 503.179 \ K

The p·dV work is given as follows;

p \cdot dV = m \cdot c_v \cdot (T_2 - T_1)

Therefore, we have;

Taking air as a diatomic gas, we have;

C_v = \dfrac{5\times R}{2} = \dfrac{5\times 8.314}{2} = 20.785 \ J/(mol \cdot K)

The molar mass of air = 28.97 g/mol

Therefore, we have

c_v = \dfrac{C_v}{Molar \ mass} = \dfrac{20.785}{28.97} \approx 0.7175 \ kJ/(kg \cdot K)

The work done per unit mass of gas is therefore;

p \cdot dV =W =   1 \times 0.7175 \times (503.179 - 294.2611) \approx 149.89 \ kJ

The work transfer per unit mass ≈ 149.89 kJ

The heat transfer for an adiabatic process = 0.

You might be interested in
How are project deliverables determined?
Greeley [361]

Answer:

The essence including its problem is listed throughout the clarification section following.

Explanation:

Projects build deliverable that seem to be the products of the venture or indeed the implementation of the project. This ensures that perhaps the agile methodology may be as broad as either the goal of the study itself as well as the coverage that would be part of a much larger venture.

For every other production to have been marked as "deliverable" within the same project, this should satisfy a few eligibility requirements:

  • It should be within the development of the work.
  • The interested parties-external or internal-must consent to the above. This is perhaps the product of hard effort.

So that the above seems to be the right answer.

7 0
3 years ago
Read 2 more answers
Going green means: increasing one's initiatives toward a concern for the environment. increasing one's bottom line, before any o
Tcecarenko [31]

Answer:

Going green means increasing one's initiatives toward a concern for the environment.

Explanation:

Going green involves all the knowledge and practices that can lead to more environmentally friendly and ecologically responsible decisions and lifestyles, which would protect and sustain the natural resources present in the environment for both present and future generations.

8 0
3 years ago
A lake has a carrying capacity of 10,000 fish. At the current level of fishing, 2,000 fish per year are taken with the catch uni
arlik [135]

Answer:

The population size would be p' = 5000

The yield would be    MaxYield = 2082 \ fishes \ per \ year

Explanation:

So in this problem we are going to be examining the application of a  population dynamics a fishing pond and stock fishing and objective would be to obtain the maximum sustainable yield and and the population of the fish at the obtained maximum sustainable yield,  so basically we would be applying an engineering solution to fishing

 

    So the current  yield which is mathematically represented as

                               \frac{dN}{dt} =   \frac{2000}{1 \ year }

 Where dN is the change in the number of fish

            and dt is the change in time

So in order to obtain the solution we need to obtain the  rate of growth

    For this we would be making use of the growth rate equation which is

                                      r = \frac{[\frac{dN}{dt}] }{N[1-\frac{N}{K} ]}

  Where N is the population of the fish which is given as 4,000 fishes

          and  K is the carrying capacity which is given as 10,000 fishes

             r is the growth rate

        Substituting these values into the equation

                              r = \frac{[\frac{2000}{year}] }{4000[1-\frac{4000}{10,000} ]}  =0.833

The maximum sustainable yield would be dependent on the growth rate an the carrying capacity and this mathematically represented as

                      Max Yield  = \frac{rK}{4} = \frac{(10,000)(0.833)}{4} = 2082 \ fishes \ per \ year

So since the maximum sustainable yield is 2082 then the the population need to be higher than 4,000 so in order to ensure a that this maximum yield the population size denoted by p' would be

                          p' = \frac{K}{2}  = \frac{10,000}{2}  = 5000\ fishes          

7 0
3 years ago
Read 2 more answers
What is the one thing that Zeus loathes the most? What did he do when he caught humans committing this act? What parallels to an
mel-nik [20]

Answer:

ares

Explanation:

He refer ares as the God that he hate the most

8 0
2 years ago
Kerosene flows through 3/4 standard type K drawn copper tube. The pressure drop measured at two points 50 m apart is 130 kPa. De
Anettt [7]

Answer:

Q=4.98\times 10^{-3}\ m^3/s

Explanation:

Given that

L= 50 m

Pressure drop = 130 KPa

For Copper tube is 3/4 standard type K drawn tube

Outside diameter=22.22 mm

Inside diameter=18.92 mm

Dynamic viscosity for kerosene

\mu =0.00164\ Pa.s

Pressure difference given as

\Delta P=\dfrac{128\mu QL}{\pi d_i^4}

Where

L is length of tube

μ is dynamic viscosity

Q is volume flow rate

d is inner diameter of tube

ΔP is pressure drop

Now by putting the values

\Delta P=\dfrac{128\mu QL}{\pi d_i^4}

130\times 1000=\dfrac{128\times 0.00164\times 50\times Q}{\pi\times 0.0189^4}

Q=4.98\times 10^{-3}\ m^3/s

So flow rate is Q=4.98\times 10^{-3}\ m^3/s

7 0
3 years ago
Other questions:
  • A(n)___ branch circuit supplies two or more receptacles or outlets for lighting and appliances
    10·1 answer
  • Air modeled as an ideal gas enters a well-insulated diffuser operating at steady state at 270 K with a velocity of 180 m/s and e
    11·1 answer
  • How are isometric drawings and orthographic drawings similar?
    10·1 answer
  • Please can you solve it for me I need it ​
    11·1 answer
  • A 10-mm steel drill rod was heat-treated and ground. The measured hardness was found to be 290 Brinell. Estimate the endurance s
    14·1 answer
  • The difference in potential energy between an electron at the negative terminal and one at the positive terminal is called the _
    11·1 answer
  • What are the main causes of injuries when using forklifts?
    5·1 answer
  • Principals of Construction intro
    11·1 answer
  • Write down about the water source selection criteria​
    9·1 answer
  • How many meters per second is 100 meters and 10 seconds
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!