Answer:
The work transfer per unit mass is approximately 149.89 kJ
The heat transfer for an adiabatic process = 0
Explanation:
The given information are;
P₁ = 1 atm
T₁ = 70°F = 294.2611 F
P₂ = 5 atm
γ = 1.5
Therefore, we have for adiabatic system under compression
![T_{2} = T_{1}\cdot \left (\dfrac{P_{2}}{P_{1}} \right )^{\dfrac{\gamma -1}{\gamma }}](https://tex.z-dn.net/?f=T_%7B2%7D%20%3D%20T_%7B1%7D%5Ccdot%20%5Cleft%20%28%5Cdfrac%7BP_%7B2%7D%7D%7BP_%7B1%7D%7D%20%20%5Cright%20%29%5E%7B%5Cdfrac%7B%5Cgamma%20-1%7D%7B%5Cgamma%20%7D%7D)
Therefore, we have;
![T_{2} = 294.2611 \times \left (\dfrac{5}{1} \right )^{\dfrac{1.5 -1}{1.5 }} \approx 503.179 \ K](https://tex.z-dn.net/?f=T_%7B2%7D%20%3D%20294.2611%20%5Ctimes%20%5Cleft%20%28%5Cdfrac%7B5%7D%7B1%7D%20%20%5Cright%20%29%5E%7B%5Cdfrac%7B1.5%20-1%7D%7B1.5%20%7D%7D%20%5Capprox%20503.179%20%5C%20K)
The p·dV work is given as follows;
![p \cdot dV = m \cdot c_v \cdot (T_2 - T_1)](https://tex.z-dn.net/?f=p%20%5Ccdot%20dV%20%3D%20m%20%5Ccdot%20c_v%20%5Ccdot%20%28T_2%20-%20T_1%29)
Therefore, we have;
Taking air as a diatomic gas, we have;
![C_v = \dfrac{5\times R}{2} = \dfrac{5\times 8.314}{2} = 20.785 \ J/(mol \cdot K)](https://tex.z-dn.net/?f=C_v%20%3D%20%5Cdfrac%7B5%5Ctimes%20R%7D%7B2%7D%20%3D%20%5Cdfrac%7B5%5Ctimes%208.314%7D%7B2%7D%20%3D%2020.785%20%5C%20J%2F%28mol%20%5Ccdot%20K%29)
The molar mass of air = 28.97 g/mol
Therefore, we have
![c_v = \dfrac{C_v}{Molar \ mass} = \dfrac{20.785}{28.97} \approx 0.7175 \ kJ/(kg \cdot K)](https://tex.z-dn.net/?f=c_v%20%3D%20%5Cdfrac%7BC_v%7D%7BMolar%20%5C%20mass%7D%20%3D%20%5Cdfrac%7B20.785%7D%7B28.97%7D%20%5Capprox%200.7175%20%5C%20kJ%2F%28kg%20%5Ccdot%20K%29)
The work done per unit mass of gas is therefore;
![p \cdot dV =W = 1 \times 0.7175 \times (503.179 - 294.2611) \approx 149.89 \ kJ](https://tex.z-dn.net/?f=p%20%5Ccdot%20dV%20%3DW%20%3D%20%20%201%20%5Ctimes%200.7175%20%5Ctimes%20%28503.179%20-%20294.2611%29%20%5Capprox%20149.89%20%5C%20kJ)
The work transfer per unit mass ≈ 149.89 kJ
The heat transfer for an adiabatic process = 0.