Answer:
0.064 mg/kg/day
6.25% from water, 93.75% from fish
Explanation:
Density of water is 1 kg/L, so the concentration of the chemical in the water is 0.1 mg/kg.
The BCF = 10³, so the concentration of the chemical in the fish is:
10³ = x / (0.1 mg/kg)
x = 100 mg/kg
For 2 L of water and 30 g of fish:
2 kg × 0.1 mg/kg = 0.2 mg
0.030 kg × 100 mg/kg = 3 mg
The total daily intake is 3.2 mg. Divided by the woman's mass of 50 kg, the dosage is:
(3.2 mg/day) / (50 kg) = 0.064 mg/kg/day
b) The percent from the water is:
0.2 mg / 3.2 mg = 6.25%
And the percent from the fish is:
3 mg / 3.2 mg = 93.75%
Answer:
increases by a factor of 6.
Explanation:
Let us assume that the initial cross sectional area of the pipe is A m² while the initial velocity of the water is V m/s², hence the flow rate of the water is:
Initial flow rate = area * velocity = A * V = AV m³/s
The water speed doubles (2V m/s) and the cross-sectional area of the pipe triples (3A m²), hence the volume flow rate becomes:
Final flow rate = 2V * 3A = 6AV m³/s = 6 * initial flow rate
Hence, the volume flow rate of the water passing through it increases by a factor of 6.
Answer:
a) 1253 kJ
b) 714 kJ
c) 946 C
Explanation:
The thermal efficiency is given by this equation
η = L/Q1
Where
η: thermal efficiency
L: useful work
Q1: heat taken from the heat source
Rearranging:
Q1 = L/η
Replacing
Q1 = 539 / 0.43 = 1253 kJ
The first law of thermodynamics states that:
Q = L + ΔU
For a machine working in cycles ΔU is zero between homologous parts of the cycle.
Also we must remember that we count heat entering the system as positiv and heat leaving as negative.
We split the heat on the part that enters and the part that leaves.
Q1 + Q2 = L + 0
Q2 = L - Q1
Q2 = 539 - 1253 = -714 kJ
TO calculate a temperature for the heat sink we must consider this cycle as a Carnot cycle. Then we can use the thermal efficiency equation for the Carnot cycle, this one uses temperatures:
η = 1 - T2/T1
T2/T1 = 1 - η
T2 = (1 - η) * T1
The temperatures must be given in absolute scale (1453 C = 1180 K)
T2 = (1 - 0.43) * 1180 = 673 K
673 K = 946 C
Answer:
We would need background context,
Explanation:
Then I would be happy to help!
Answer:
The Poisson's Ratio of the bar is 0.247
Explanation:
The Poisson's ratio is got by using the formula
Lateral strain / longitudinal strain
Lateral strain = elongation / original width (since we are given the change in width as a result of compession)
Lateral strain = 0.15mm / 40 mm =0.00375
Please note that strain is a dimensionless quantity, hence it has no unit.
The Longitudinal strain is the ratio of the elongation to the original length in the longitudinal direction.
Longitudinal strain = 4.1 mm / 270 mm = 0.015185
Hence, the Poisson's ratio of the bar is 0.00375/0.015185 = 0.247
The Poisson's Ratio of the bar is 0.247
Please note also that this quantity also does not have a dimension