1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spayn [35]
3 years ago
13

#5 Air undergoes an adiabatic compression in a piston-cylinder assembly from P1= 1 atm and Ti=70 oF to P2= 5 atm. Employing idea

l gas model with constant specific heat capacity ratio (Y), determine the work and heat transfer per unit mass if y = 1.5. (15 points)​
Engineering
1 answer:
otez555 [7]3 years ago
8 0

Answer:

The work transfer per unit mass is approximately 149.89 kJ

The heat transfer for an adiabatic process = 0

Explanation:

The given information are;

P₁ = 1 atm

T₁ = 70°F = 294.2611 F

P₂ = 5 atm

γ = 1.5

Therefore, we have for adiabatic system under compression

T_{2} = T_{1}\cdot \left (\dfrac{P_{2}}{P_{1}}  \right )^{\dfrac{\gamma -1}{\gamma }}

Therefore, we have;

T_{2} = 294.2611 \times \left (\dfrac{5}{1}  \right )^{\dfrac{1.5 -1}{1.5 }} \approx 503.179 \ K

The p·dV work is given as follows;

p \cdot dV = m \cdot c_v \cdot (T_2 - T_1)

Therefore, we have;

Taking air as a diatomic gas, we have;

C_v = \dfrac{5\times R}{2} = \dfrac{5\times 8.314}{2} = 20.785 \ J/(mol \cdot K)

The molar mass of air = 28.97 g/mol

Therefore, we have

c_v = \dfrac{C_v}{Molar \ mass} = \dfrac{20.785}{28.97} \approx 0.7175 \ kJ/(kg \cdot K)

The work done per unit mass of gas is therefore;

p \cdot dV =W =   1 \times 0.7175 \times (503.179 - 294.2611) \approx 149.89 \ kJ

The work transfer per unit mass ≈ 149.89 kJ

The heat transfer for an adiabatic process = 0.

You might be interested in
4. Water vapor enters a turbine operating at steady state at 1000oF, 220 lbf/in2 , with a volumetric flow rate of 25 ft3/s, and
hodyreva [135]
Yes i is the time of the day you get to frost the moon and back and then you can come over and then go to hang out with me me and then go to hang out
6 0
3 years ago
An automated transfer line is to be designed. Based on previous experience, the average downtime per occurrence = 5.0 min, and t
IRINA_888 [86]

Answer:

a) 28 stations

b) Rp = 21.43

E = 0.5

Explanation:

Given:

Average downtime per occurrence = 5.0 min

Probability that leads to downtime, d= 0.01

Total work time, Tc = 39.2 min

a) For the optimum number of stations on the line that will maximize production rate.

Maximizing Rp =minimizing Tp

Tp = Tc + Ftd

=  \frac{39.2}{n} + (n * 0.01 * 5.0)

= \frac{39.2}{n} + (n * 0.05)

At minimum pt. = 0, we have:

dTp/dn = 0

= \frac{-39.2}{n^2} + 0.05 = 0

Solving for n²:

n^2 = \frac{39.2}{0.05} = 784

n = \sqrt{784} = 28

The optimum number of stations on the line that will maximize production rate is 28 stations.

b) Tp = \frac{39.2}{28} + (28 * 0.01 * 5)

Tp = 1.4 +1.4 = 2.8

The production rate, Rp =

\frac{60min}{2.8} = 21.43

The proportion uptime,

E = \frac{1.4}{2.8} = 0.5

3 0
3 years ago
Ext
Galina-37 [17]
Engineering is the technical
8 0
2 years ago
. Two rods, with masses MA and MB having a coefficient of restitution, e, move
GarryVolchara [31]

Answer:

a) V_A = \frac{(M_A - eM_B)U_A + M_BU_B(1+e)}{M_A + M_B}

V_B = \frac{M_AU_A(1+e) + (M_B - eM_A)U_B}{M_A + M_B}

b) U_A = 3.66 m/s

V_B = 4.32 m/s

c) Impulse = 0 kg m/s²

d) percent decrease in kinetic energy = 47.85%

Explanation:

Let U_A be the initial velocity of rod A

Let U_B be the initial velocity of rod B

Let V_A be the final velocity of rod A

Let V_B be the final velocity of rod B

Using the principle of conservation of momentum:

M_AU_A + M_BU_B = M_AV_A + M_BV_B............(1)

Coefficient of restitution, e = \frac{V_B - V_A}{U_A - U_B}

V_A = V_B - e(U_A - U_B)........................(2)

Substitute equation (2) into equation (1)

M_AU_A + M_BU_B = M_A(V_B - e(U_A - U_B)) + M_BV_B..............(3)

Solving for V_B in equation (3) above:

V_B = \frac{M_AU_A(1+e) + (M_B - eM_A)U_B}{M_A + M_B}....................(4)

From equation (2):

V_B = V_A + e(U_A -U_B)......(5)

Substitute equation (5) into (1)

M_AU_A + M_BU_B = M_AV_A + M_B(V_A + e(U_A -U_B))..........(6)

Solving for V_A in equation (6) above:

V_A = \frac{(M_A - eM_B)U_A + M_BU_B(1+e)}{M_A + M_B}.........(7)

b)

M_A = 2 kg\\M_B = 1 kg\\U_B = -3 m/s( negative x-axis)\\e = 0.65\\U_A = ?

Rod A is said to be at rest after the impact, V_A = 0 m/s

Substitute these parameters into equation (7)

0 = \frac{(2 - 0.65*1)U_A - (1*3)(1+0.65)}{2+1}\\U_A = 3.66 m/s

To calculate the final velocity, V_B, substitute the given parameters into (4):

V_B = \frac{(2*3.66)(1+0.65) - (1 - (0.65*2))*3}{2+1}\\V_B = 4.32 m/s

c) Impulse, I = M_AV_A + M_BV_B - (M_AU_A + M_BU_B)

I = (2*0) + (1*4.32) - ((2*3.66) + (1*-3))

I = 0 kg m/s^2

d) %\triangle KE = \frac{(0.5 M_A V_A^2 + 0.5 M_B V_B^2) - ( 0.5 M_A U_A^2 + 0.5 M_B U_B^2)}{0.5 M_A U_A^2 + 0.5 M_B U_B^2} * 100\%

%\triangle KE = \frac{((0.5*2*0) + (0.5 *1*4.32^2)) - ( (0.5 *2*3.66^2) + 0.5*1*(-3)^2))}{ (0.5 *2*3.66^2) + 0.5*1*(-3)^2)} * 100\%

% \triangle KE = -47.85 \%

7 0
3 years ago
The convection coefficient for flow over a solid sphere may be determined by submerging the sphere, which is initially at 25 °C,
sashaice [31]

Answer:

t = 59.37 s

Explanation:

Given data:

thermal diffusivity = \alpha = \frac{k}{\rho c_p} =0.40\times 10^{-0.5}

theraml conductivity = k = 22 W/m.K

h = 300 W/ m^2.K

T_i = 25 degree C = 298 k

T_o = 60 degree C = 333 k

T_{\infty}= 75 degree C =  348 L

diameter d = 0.1 m

characteristics length Lc = r/3 = = 0.0166

Bi = \frac{hLc}{K} = \frac{300\times 0.0166}{22} = 0.226

\tau = \frac{\alpha t}{lc^2} = \frac{0.4\times 10^{-5}\times t}{0.0166^2}

\tau = 0.036 t

\frac{T_o -T_{\infty}}{T_i -T_{\infty}} = Ae^[\lambda^2 \tau}

at Bi = 0.226

Ai = 0.982

\lambda = 0.876

\frac{333348}{298-348} = 0.982e^{-0.879^2 0.036t}

0.3 = 0.982 e^{-0.2t}

0.305 = e^{-0.2t}

-1.187 = - 0.02t

t = 59.37 s

7 0
3 years ago
Other questions:
  • The 30-kg gear is subjected to a force of P=(20t)N where t is in seconds. Determine the angular velocity of the gear at t=4s sta
    9·1 answer
  • Pennfoster Trades Safety test. Would appreciate the help. Thank you in advance. Check the screenshots below for the questions I'
    8·1 answer
  • A very specific part of the population is called a
    6·1 answer
  • In your opinion, what is the external opportunity cost of a successful biking company in a community
    7·1 answer
  • Consider a 0.15-mm-diameter air bubble in a liquid. Determine the pressure difference between the inside and outside of the air
    10·1 answer
  • What substance do humans give to livestock to help them stay healthy?
    5·1 answer
  • Consider a standard room thermostat. Determine the sensor, transducer, output, and control stages for this measurement system.
    13·1 answer
  • Ring rolling is a deformation process in which a thick-walled ring of smaller diameter is rolled into a thin-walled ring of larg
    11·1 answer
  • Solve using Matlab the problems:
    12·1 answer
  • What is the probability that Tina will NOT wear a white t-shirt on the first day of her trip?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!