Answer:
The process which has friction
Explanation:
The entropy is simply the change in the state of the things or the molecules in the system. It is simply the change in the energy of the system with a focus on the atoms in the system. This is also known as the internal energy of the system and is given the symbol, G. The friction contributes to the change in the energy of the system. This is because friction generates another form of energy - that is heat energy. This energy causes the internal temperature id the system to increase. Hence the greater change in the temperature.
Answer & Explanation:
function Temprature
NYC=[33 33 18 29 40 55 19 22 32 37 58 54 51 52 45 41 45 39 36 45 33 18 19 19 28 34 44 21 23 30 39];
DEN=[39 48 61 39 14 37 43 38 46 39 55 46 46 39 54 45 52 52 62 45 62 40 25 57 60 57 20 32 50 48 28];
%AVERAGE CALCULATION AND ROUND TO NEAREST INT
avgNYC=round(mean(NYC));
avgDEN=round(mean(DEN));
fprintf('\nThe average temperature for the month of January in New York city is %g (F)',avgNYC);
fprintf('\nThe average temperature for the month of January in Denvar is %g (F)',avgDEN);
%part B
count=1;
NNYC=0;
NDEN=0;
while count<=length(NYC)
if NYC(count)>avgNYC
NNYC=NNYC+1;
end
if DEN(count)>avgDEN
NDEN=NDEN+1;
end
count=count+1;
end
fprintf('\nDuring %g days, the temprature in New York city was above the average',NNYC);
fprintf('\nDuring %g days, the temprature in Denvar was above the average',NDEN);
%part C
count=1;
highDen=0;
while count<=length(NYC)
if NYC(count)>DEN(count)
highDen=highDen+1;
end
count=count+1;
end
fprintf('\nDuring %g days, the temprature in Denver was higher than the temprature in New York city.\n',highDen);
end
%output
check the attachment for additional Information
Answer:
D
Explanation:
the way vertices are connected may be different so having same number of edges do not mean that total degree will also be same.
Answer with Explanation:
Part a)
The volume of water in the tank as a function of time is plotted in the below attached figure.
The vertical intercept of the graph is 46.
Part b)
The vertical intercept represents the volume of water that is initially present in the tank before draining begins.
Part c)
To find the time required to completely drain the tank we calculate the volume of the water in the tank to zero.

Part d)
The horizontal intercept represents the time it takes to empty the tank which as calculated above is 13.143 minutes.