Answer:
Orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
Explanation:
The gravitational force is responsible for the orbital motion of the planet, satellite, artificial satellite, and other heavenly bodies in outer space.
When an object is applied with a velocity that is equal to the velocity of the orbit at that location, the body continues to move forward. And, this motion is balanced by the gravitational pull of the second object.
The orbiting body experience a centripetal force that is equal to the gravitational force of the second object towards the body.
The velocity of the orbit is given by the relation,

Where
V - velocity of the orbit at a height h from the surface
R - Radius of the second object
G - Gravitational constant
h - height from the surface
The body will be in orbital motion when its kinetic motion is balanced by gravitational force.

Hence, the orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
Answer:
a) v = 88.54 m/s
b) vf = 26.4 m/s
Explanation:
Given that;
m = 1400.0 kg
a)
by using the energy conservation
loss in potential energy is equal to gain in kinetic energy
mg × ( 3200-2800) = 1/2 ×m×v²
so
1400 × 9.8 × 400 = 0.5 × 1400 × v²
5488000 = 700v²
v² = 5488000 / 700
v² = 7840
v = √7840
v = 88.54 m/s
b)
Work done by all forces is equal to change in KE
W_gravity + W_non - conservative = 1/2×m×(vf² - vi²)
we substitute
1400 × 9.8 × ( 3200-2800) - (5 × 10⁶) = 1/2 × 1400 × (vf² -0 )
488000 = 700 vf²
vf² = 488000 / 700
vf² = 697.1428
vf = √697.1428
vf = 26.4 m/s
Hope this answers your question!! Ask any help at anytime
Calculate the change in heat of the aluminum; show all calculations. Calculate the change in heat of the water; show all calculations. Are the two values the same? Why or why not? See the attached picture for the numbers.
I got -3443.14 J for the aluminum and 3443.595 for the water
<span>You can start with the equations you know
a=v^2/r = (2pi*r/T)^2/r = 4pi^2r/T^2
Radius of earth (R) = 6378.1 km
Time in one day (T) = 86400 seconds
Latitude = 44.4 degrees
If you draw a circle and have the radius going out at a 44.4 degree angle above the center you can then find the r.
r=Rcos(44.4)
r=6378.1cos(44.4)
r= 4556.978198 km or 4556978 m
Now you can plug this value into the acceleration equation from above...
a= 1.8*10^8/7.47*10^9
a= .0241 m/s^2 </span>