If you have no way to accurately measure all of the object's bumps and dimples, then the only way to measure its volume is by means of fluid displacement.
-- Put some water into a graduated (marked) container, read the amount of water, drop the object into the container, and read the new volume in the container. The volume of the object is the difference between the two readings.
-- Alternatively, stand an unmarked container in a large pan, and fill it to the brim. Slowly slowly lower the object into the unmarked container, while the pan catches the water that overflows from it. When the object is completely down in the container, carefully remove the container from the pan, and measure the volume of the water in the pan. It's equal to the volume of the object.
Hmmm...maybe it would be because since you're staying still then things appear to go by quickly.
Using the kinematic equation d = V_0 * t + 1/2 * a * t^2, where d is height you can rewrite this to be d = 1/2*g*t^2 or 4.9t^2
g = a because this is a free fall
d = 1/2 * 9.81m/s^2 * 2.5^2
d = 30.65625m
d = 30.7m
Answer:
The radius of the loop is 20.66 km
Explanation:
let the radius of the loop be r
mass of airplane is m
At the top, the pilot experiences two radial forces, which are
1) Gravitational force is mg
2) Centrifugal forces mv²/r out of the center
When the pilot experiences no weight,
then, mg = mv²/r
r = v² / g
= 450² / 9.8
= 20.66 x 10³3
= 20.66 km