<span> <span> The answer to your question is: increase the force applied to the object.
Two items are provided as a basis for that conclusion:
1. According to Newton's Second Law of Motion, the formula for finding force is: F = ma
where F is the force,
m is the mass of an object,
and a is the acceleration of the object.
And 2: work = force x distance or W = F x d.</span></span>
Answer:
120°
Explanation:
Draw a free body diagram. There are three forces acting on the traffic light. Two tension forces acting along the cables, and weight.
The tension forces have an angle θ between them. That means each tension force forms an angle of θ/2 with respect to the vertical. So the y component of each tension force is:
Ty = T cos (θ/2)
Sum of the forces in the y direction:
∑F = ma
Ty + Ty − W = 0
2 Ty = W
Substituting:
2 T cos (θ/2) = W
If W = T, then:
2 W cos (θ/2) = W
2 cos (θ/2) = 1
cos (θ/2) = 1/2
θ/2 = 60°
θ = 120°
The guy below is wrong!
F=ma
Where force = mass x acceleration
We dont have acceleration, a= change in velocity divided by the time taken.
a = v (final velocity) - u (initial) / t
a us 8-0 (at rest means u was 0) / 20 = 0.4
Using F=ma
F= mass x acceleration
F= 4 x 0.4
F=1.6 N
the answer is (A) the movement of the magnet relative to the coil
Answer:
b. horizontal distance/time graph
Explanation:
d is incorrect because object is moving at the same pace the entire time