Answer:
Explanation:
Total weight being moved = 5000+1000+200
= 6200 lb .
Force applied = 700 lb
= 700 x 32 = 22400 poundal .
acceleration (a) = 22400 / 6200
= 3.613 ft /s²
To know velocity after 6 ft we apply the formula
v² = u² + 2as
v² = 0 + 2 x 3.613 x 6
43.356
v = 6.58 ft/s
Acid mine drainage is the formation and movement of highly acidic water rich in heavy metals. This acidic water forms through the chemical reaction of surface water (rainwater, snowmelt, pond water) and shallow subsurface water with rocks that contain sulfur-bearing minerals, resulting in sulfuric acid.
Answer:
if engineering disappeared for a day i would be at a loss. i wouldnt know what to do with myself considering engineering is my life. one way that engineers improve my life is they help me to understand enything end everything
Explanation:
Answer:
Ammonia gas a hazardous gas to our health, when we are exposed to it for a long time. The gas is lighter than air, that means it's high concentration may not be noticed at the point of leakage, because it flows with the wind direction. Ammonia gas detector are used to determine the concentration of the gas at a particular place. We can use the dispersion modelling software program to know the exact position, where we can place the gas detector, which would be where evacuation is needed.
During evacuation, when the concentration of the gas has increased, a self-contained breathing apparatus should be used for breathing, and an encapsulated suit should be worn to prevent ammonia from reacting with our sweat or any other chemical burn. A mechanic ventilation will also be needed in the place of evacuation, so that the ammonia concentration in that area can be dispersed.
Answer:
(i) 12 V in series with 18 Ω.
(ii) 0.4 A; 1.92 W
(iii) 1,152 J
(iv) 18Ω — maximum power transfer theorem
Explanation:
<h3>(i)</h3>
As seen by the load, the equivalent source impedance is ...
10 Ω + (24 Ω || 12 Ω) = (10 +(24·12)/(24+12)) Ω = 18 Ω
The open-circuit voltage seen by the load is ...
(36 V)(12/(24 +12)) = 12 V
The Thevenin's equivalent source seen by the load is 12 V in series with 18 Ω.
__
<h3>(ii)</h3>
The load current is ...
(12 V)/(18 Ω +12 Ω) = 12/30 A = 0.4 A . . . . load current
The load power is ...
P = I^2·R = (0.4 A)^2·(12 Ω) = 1.92 W . . . . load power
__
<h3>(iii)</h3>
10 minutes is 600 seconds. At the rate of 1.92 J/s, the electrical energy delivered is ...
(600 s)(1.92 J/s) = 1,152 J
__
<h3>(iv)</h3>
The load resistance that will draw maximum power is equal to the source resistance: 18 Ω. This is the conclusion of the Maximum Power Transfer theorem.
The power transferred to 18 Ω is ...
((12 V)/(18 Ω +18 Ω))^2·(18 Ω) = 144/72 W = 2 W