Answer:
a)W=12.62 kJ/mol
b)W=12.59 kJ/mol
Explanation:
At T = 100 °C the second and third virial coefficients are
B = -242.5 cm^3 mol^-1
C = 25200 cm^6 mo1^-2
Now according isothermal work of one mole methyl gas is
W=-
a=
b=
from virial equation

And

a=
b=
Now calculate V1 and V2 at given condition

Substitute given values
= 1 x 10^5 , T = 373.15 and given values of coefficients we get

Solve for V1 by iterative or alternative cubic equation solver we get

Similarly solve for state 2 at P2 = 50 bar we get

Now

a=241.33
b=30780
After performing integration we get work done on the system is
W=12.62 kJ/mol
(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get
dV=RT(-1/p^2+0+C')dP
Hence work done on the system is

a=
b=
by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work
W=12.59 kJ/mol
The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series
Answer:

Explanation:
The position of each point are the following:

Since the three objects report charges with same sign, then, net force has a repulsive nature. The net force experimented by point charge A is:





Answer:
Machine 2 has a higher process capability index, it would be best considered for purchase.
Explanation:
Process capability index: Cpk= Min [(mean-L spec)/3sd; (U spec-mean)/3sd]
For machine 1, mean= 48mm and L spec= 46 and U spec= 50, Standard deviation sd= 0.7
Cpk= [0.952;0.952]= 0.952
For machine 2, mean= 47 and L spec= 46 and U spec= 50, Standard deviation sd= 0.3
Cpk= [1.111;3.333]= 1.111
It is clearly observed from the calculations above that the Cpk value of machine 2 is higher than that of machine 1.
Since machine 2 has a higher process capability index, it would be best considered for purchase.
Answer:
D
Explanation:
I would say this awnser because its the only one that makes sence to me