Answer:
Resistance, R = 13 ohms
Explanation:
The Ohm's law gives the direct relationship between the voltage, current and the resistance of the device. The relation is as follows :

Where
I is the current
r is the resistance
The value of resistance is given by :

According to given data,
Voltage of the circuit, V = 130 V
Current rating of the circuit, I = 10 A
Resistance of the device,

R = 13 ohms
So, the resistance of the device is 13 ohms. Hence, this is the required solution.
Answer:
(i) Electric field outside the shell:
For point r>R; draw a spherical gaussian surface of radius r.
Using gauss law, ∮E.ds=q0qend
Since E is perpendicular to gaussian surface, angle betwee E is 0.
Also E being constant, can be taken out of integral.
So, E(4πr2)=q0q
So, E=4πε01r2q
Although the video is not found here, the sentence makes reference to the transmission spectrum of colored filters.
<h3>What is the transmission spectrum?</h3>
The transmission spectrum indicates the light portion having a given wavelength that can be passed through a filter.
This spectrum (transmission spectrum) depends on the physical separation of the particles that form the filter.
In conclusion, although the video is not found here, the sentence makes reference to the transmission spectrum of colored filters.
Learn more about the transmission spectrum here:
brainly.com/question/1287536
#SPJ1
Answer:
1. T₁ = 500 N
2. T₂ = 866 N
Explanation:
Please see attached photo for the diagram.
Thus, we can obtain obtained the value of T₁ and T₂ as follow:
1. Determination of T₁
Angle θ = 30
Hypothenus = 100 kg
Opposite = T₁ =?
Sine θ = Opposite /Hypothenus
Sine 30 = T₁ / 100
Cross multiply
T₁ = 100 × Sine 30
T₁ = 100 × 0.5
T₁ = 50 Kg
Multiply by 10 to express in Newton
T₁ = 50 × 10
T₁ = 500 N
2. Determination of T₂
Angle θ = 60
Hypothenus = 100 kg
Opposite = T₂ = ?
Sine θ = Opposite /Hypothenus
Sine 60 = T₂ / 100
Cross multiply
T₂ = 100 × Sine 60
T₂ = 100 × 0.8660
T₂ = 86.6 Kg
Multiply by 10 to express in Newton
T₂ = 86.6 × 10
T₂ = 866 N
Answer:
B = E/c = 14.04T₁ = 11 pT
Explanation:
We know c = E/B where E = maximum electric field = 3.30 × 10⁻³ V/m, B = maximum magnetic field and c = speed of light
B = E/c also c = fλ = λ/T where λ = wavelength = 235 μm = 235 × 10⁻⁶ m and T = period
c = λ₁/T₁ = λ₂/T₂ T₂ = 2.8T₁ where λ₁,λ₂ are the initial and final wavelengths and T₁,T₂ are the initial and final periods.
T₁ = λ₁/c = 235 × 10⁻⁶ m/3 × 10⁸ m/s = 7.833 × 10⁻¹³ s = 0.7833 ps
T₂ = 2.8T₁ = 2.8 × 7.833 × 10⁻¹³ s = 21.93 × 10⁻¹³ s = 2.193 ps
λ₁/T₁ = λ₂/2.8T₁
λ₂ = 2.8λ₁ = 2.8 × 235 μm = 658 μm
c = λ₂/T₂ = 2.8λ₁/2.8T₁ = λ₁/T₁ , since the speed of light c is constant.
B = E/c = E/λ₁/T₁ = ET₁/λ₁
B = ET₁/λ₁ = 3.30 × 10⁻³ V/m × T₁/235 × 10⁻⁶ m = 14.04T₁ Tesla
B = 14.04 × 7.833 × 10⁻¹³ s = 10.99 × 10⁻¹² T ≅ 11 pT