Answer:
a) 
b) 
c) 
Explanation:
From the exercise we know the initial velocity of the projectile and its initial height

To find what time does it take to reach maximum height we need to find how high will it go
b) We can calculate its initial height using the following formula
Knowing that its velocity is zero at its maximum height



So, the projectile goes 1024 ft high
a) From the equation of height we calculate how long does it take to reach maximum point



Solving the quadratic equation



So, the projectile reach maximum point at t=2s
c) We can calculate the final velocity by using the following formula:


Since the projectile is going down the velocity at the instant it reaches the ground is:

ummmm it might be 300... i used a calculator
sorry if it is wrong
Answer : The correct option is, (D) 273 Kelvin, 0 degrees Celsius, 32 degrees Fahrenheit
Explanation :
Conversion of degree Celsius to Kelvin :

Conversion of degree Celsius to degrees Fahrenheit :

By using these two conversion factors, we get the three temperature readings all mean the same thing.
For option A :


For option B :


For option C :


For option D :


From the given options, only option (D) is correct.
Hence, the correct option is, (D) 273 Kelvin, 0 degrees Celsius, 32 degrees Fahrenheit
Second option would be correct.
3.5 meters per second second is the acceleration because we know that acceleration is change in velocity over time and the change is velocity here is 35 and the time is 10 so we can simply divide 35 by 10 which is 3.5 m/s squared