Explanation:
average speed = total distance travelled / total time travelled
time to travel the first 6km: 6 / 50 = 3/25 (h)
time to travel the next 6km: 6 / 90 = 1/15 (h)
[I think there's problem in the question 'cause 900km/h sounds impossible for normal person to travel in normal condition]
The total time: 3/25 + 1/15 = 14/75 (h)
Average speed over the 12 km drive will be:

Answer:
2000 nickels
Explanation:
One way to solve proportionality problems, direct and inverse: the simple 3 rule.
If the relationship between the magnitudes is direct (when one magnitude increases so does the other), the simple direct rule of three must be applied.
On the contrary, if the relationship between the magnitudes is inverse (when one magnitude increases the other decreases) the rule of three simple inverse applies.
The simple 3 rule is an operation that helps us quickly solve proportionality problems, both direct and inverse.
To make a simple rule of three we need 3 data: two magnitudes proportional to each other, and a third magnitude. From these, we will find out the fourth term of proportionality.
In the simple three rule, therefore, the proportionality relationship between two known values A and B is established, and knowing a third value C, a fourth value D is calculated.
A -> B
C -> D
Calculation
1 nickel --> 5 g
X? nickel --> 10000g
X = (10000 g * 1 nickel) / 5 g
X = 2000 nickels
Answer:
The value of the correct angle of banking for the road is
°
Explanation:
Given data
Velocity (v) = 60 
Radius = 150 m
The velocity of the car in this case is given by



Put all the values in above formula we get

2.446
°
Therefore the value of the correct angle of banking for the road is
°
Answer:
Hey
Yes, this is true.
As some people have it wrong, waves in the water (ocean) are not waves of moving water, rather the wave is moving through the water. A wave is a disturbance of a medium not the meduim moving.
Answer:
A. Two tennis balls that are near each other
Explanation:
The formula for gravitational force (F) between two objects is

where m₁ and m₂ are the masses of the two objects, d is the distance between their centres, and G is the gravitational constant.
Thus, two objects that are far from each other will have a smaller gravitational force. We can eliminate Options C and D.
If the objects are at the same distance, those with the smaller mass will have a smaller force.
The mass of a tennis ball is 57 g.
The mass of a soccer ball is 430 g.
Two tennis balls that are near each other will have a smaller gravitational attraction.