As per Bernuolli's Theorem total energy per unit mass is given as

now from above equation




now by above equation


Part B)
Now energy per unit weight



In practice, something that follows a very predictable pattern can be used as a time standard. This include things like radioactive decay, planetary orbit, and the speed of light, among others.
Answer:
F = 36 N
Explanation:
Given that,
Charge, q₁ = +8 μC
Charge, q₂ = -5 μC
The distance between the charges, r = 10 cm = 0.1 m
We need to find the magnitude of the electrostatic force. The formula for the electrostatic force is given by :

So, the magnitude of the electrostatic force is 36 N.
Answer:
B. equals zero
Explanation:
Given data
one complete cycle = heat flow
solution
we have given that when heat engine complete 1 cycle change in energy = net heat flow
that is always equal to zero
from first law of thermodynamics that
ΔU = Q + W
we know ΔU is the change internal energy in system and Q is net heat transfer in system and W is net work done in system
therefore change of internal energy during one cycle
ΔU = Ufinal - Uinitial
ΔU = Uinitial - Uinitial = 0
Answer:
Heat capacity, Q = 2090 Joules.
Explanation:
Given the following data;
Mass = 100 grams
Specific heat capacity = 4.18 J/g°C.
Temperature = 5°C
To find the quantity of heat required;
Heat capacity is given by the formula;
Where;
Q represents the heat capacity or quantity of heat.
m represents the mass of an object.
c represents the specific heat capacity of water.
t represents the temperature of an object.
Substituting into the formula, we have;
Heat capacity, Q = 2090 Joules.