40 electrons
Explanation:
The N for silicon tetrachloride, SiCl₄ is 40 electrons. The needed electrons that would be used to complete the lewis structure of the compound is actually 40 electrons. This number of electron will help the compound attain a noble configuration.
- The compound SiCl₄ is a covalent one. Here, there is sharing of electrons between two atoms.
- In drawing the electron dot formula, one must take into account the Available electrons and the Needed electrons.
- The Available electrons are sum of the valence electrons that can be accessed for the bonding. Si has 4 valence electrons, Cl has 7 valence electrons this makes a total of 4 + 7(4 atoms of chlorine), 32 available electrons.
- But to make a complete octet like that of noble gases, each atom most have 8 complete outer most electrons. This is the needed number of electrons. Since there are 5 atoms i.e 4 atoms of chlorine and 1 atom of Silicon, the needed electrons will be 5x8 = 40 electrons.
Learn more:
lewis structure : brainly.com/question/6215269
#learnwithBrainly
Answer:
For each system listed in first column of the table below, decide (if possible) whether the change described in the second column will increase the entropy S of the system, decrease S , or leave S unchanged. If you don?t have enough information to decide, check the not enough information button in the last column
Answer: 21.5kg in grams is 21,500 grams
21.5kg in mg is 215,000,00
Explanation:
A scientific law is a statement that is universally accepted and answers the "how?" question.
Hope this helps!
Explanation:
As it is known that in solids, molecules are held together because of strong intermolecular forces of attraction. As a result, they are held together and have definite shape and volume.
Whereas in liquids, molecules are not held so strongly as they are in solids. Hence, they move from their initial position and they do not have definite shape but they have definite volume.
Liquids obtain the shape of container in which they are kept.
In gases, molecules are held together by weak intermolecular forces. As a result, they move far apart from each other and occupy the space of a container or vessel in which they are placed.
The physical state (at room temperature) of the following are determined as follows:
(a) Helium in a toy balloon : Helium at room temperature exists as a gas. So, when helium is present in a toy balloon then it acquires the volume of toy balloon.
(b) Mercury in a thermometer : Mercury at room temperature exists as a liquid. When it is placed in a thermometer then volume of mercury does not get affected.
(c) Soup in a bowl : Since, soup is a liquid. Hence, its volume will not change according to the volume of container.