Answer: <em>The </em><em>alkali metals</em><em> reactivity is generally higher than the alkaline earth metals. </em>
Explanation: <em>This makes the alkaline earth metals with their two valence electrons less reactive than alkali metals with their one valence electron.</em>
<u>Alkali metals is ns1 and alkaline earth metals is ns2</u>
If my memory serves me well, the following element which has the most properties in common with iron (Fe) is definitely <span>Osmium (Os) because they are stand for the same group!
I'm sure it helps!</span>
In titration, the moles of acid equal moles of base. You were given that 22.75ml of 0.215M NaOH is used, so calculate the number of moles of that base the experiment used in total. After that because you know mol base = mol acid, whatever amount of base you use must be the total amount of acid present in the solution. You were given the volume of the acid, and you have just found the total mols of acid. Using these two information, solve for the concentration. And one more thing, even though I'm pretty sure it won't affect your answer, you should always convert things to the proper units. Since the concentration we're talking about in this problem is molarity, which has the unit mol/L, you should always have all of your numbers in these units. It just make it simpler and will not confuse you
The atomic radius increases as you would go down a particular group on the periodic table of elements. This is because along with a greater number of protons, there would also be electrons as well, and thus the need of electron shells surrounding the atom would also be required, to compensate for the more electrons, as according to the bohr model, each shell contains 8 electrons in its electron shell. Thus the distance from the nucleus to the outermost shell increases, the atomic radius.
<span>Answer: 56.6 moles
Explanation:
28.3 moles of Pb would produce twice as much moles as Ag.
28.3 X (2moles Ag/ 1 mol Pb) = 56.6 moles of Ag.</span>