Answer:

is the no. of electrons
Explanation:
Given:
- quantity of charge transferred,

<u>No. of electrons in the given amount of charge:</u>
As we have charge on one electron 
so,


is the no. of electrons
- Now if each water molecules donates one electron:
Then we require
molecules.
<u>Now the no. of moles in this many molecules:</u>

where
Avogadro No.


- We have molecular mass of water as M=18 g/mol.
<u>So, the mass of water in the obtained moles:</u>

where:
m = mass in gram


Answer:
13.7m
Explanation:
Since there's no external force acting on the astronaut or the satellite, the momentum must be conserved before and after the push. Since both are at rest before, momentum is 0.
After the push

Where
is the mass of the astronaut,
is the mass of the satellite,
is the speed of the satellite. We can calculate the speed
of the astronaut:

So the astronaut has a opposite direction with the satellite motion, which is further away from the shuttle. Since it takes 7.5 s for the astronaut to make contact with the shuttle, the distance would be
d = vt = 1.83 * 7.5 = 13.7 m
This question sounds like it came after some activity where
some forces were observed. Since we were not there, and
we don't know what the activity was, we don't know what forces
were observed, and we have no clue to how they might be related
to the motion of the Earth around the sun.