Answer:
<h2>Magnetic field required for the given induced EMF is 1.41 T</h2>
Explanation:
Potential difference across the blood vessel is given as

here we know that the speed is given as



now we have


Now volume flow rate of the blood is given as


from above equation we have

Now we have


Answer:
Now e is due to the ring at a
So
We say
1/4πEo(ea/ a²+a²)^3/2
= 1/4πEo ea/2√2a³
So here E is faced towards the ring
Next is E due to a point at the centre
So
E² = 1/4πEo ( e/a²)
Finally we get the total
Et= E²-E
= e/4πEo(2√2-1/2√2)
So the direction here is away from the ring
Answer: v = 4.4 m/s
Explanation:
In the absence of friction, the total mechanical energy will be constant
KE₀ + PE₀ = KE₁ + PE₁
0 + mg(6) = ½mv₁² + mg(5)
½mv₁² = mg(6 - 5)
v = √(2g(1)) = 4.4 m/s
Well, the density of the water is

so i believe that is what the question is asking for :)